Influenza: The past, the present, the (future) pandemic

Kristin Butler, MLS (ASCP)^{cm} Department of Clinical Laboratory Sciences Louisiana Health Sciences Center - Shreveport Fall 2017

Objectives

- 1) Detail influenza epidemics of the past.
- 2) Explain the influenza virus structure, reservoirs, pathogenicity, and vaccination prevention.
- 3) Discuss future threats of novel influenza virus strains.

A virus as old as time?

- •As far back as 400 BC
- •Described by Hippocrates, Of the Epidemics

Influenza Etymology

- Italian for "influence", referring to the cause of the disease
- Later modified to influenza de freddo
- First used in English by J. Hugger in 1703
- Other archaic terms:
- "epidemic catarrh"
- "sweating sickness"

"la grippe" "Spanish fever"

Influenza of the past

•1510 pandemic in Europe

Influenza of the past

• "Catarrhal fever" epidemics continue through the 1800s

Influenza of the past

- •European Influenza: Or the Greatest Disease Epidemic of the Modern Age
 - by Georg Friedrich Most, 1820

www.anebquariac-heuberger.de

Influenza of the past

•1889 Asiatic (Russian) flu

Pandemics of the past

•1918 Spanish flu

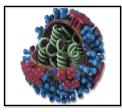
Pandemics of the past

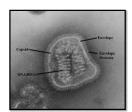
Pandemics of the past

2009 H1N1 swine flu

- •Novel virus strain
- Similar to 1918 virus
- First cases seen in children in Mexico and California
- •Some antiviral resistance

Influenza today

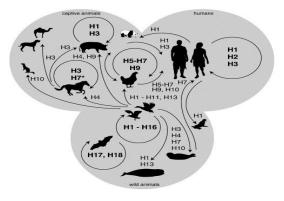

- •Endemic virus strains
- •Seasonal epidemics
- •Evolved healthcare
- •Antivirals and antibiotics
- •Ongoing threats of future pandemics to novel avian virus strains

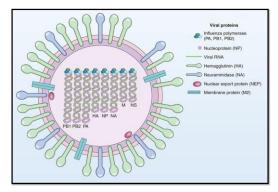


Influenza Virus

Three types of flu viruses:

- Influenza A most common, most pathogenic
- Influenza B less common, less pathogenic
- Influenza C least common, least pathogenic

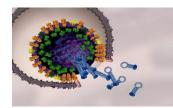



Influenza Season

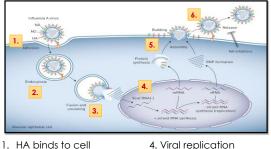
- •A flu epidemic every year
 - "Flu Season" from October to May
 - Peaks in December to March
- Increasing number of virus reservoirs today
 - Avian, swine, equine, canine, other mammals
 - Human viruses similar to animal viruses
 - Unpredictable viral genetics

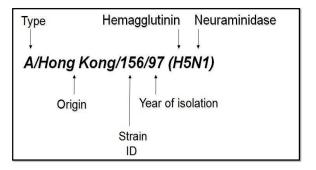
Influenza Virus Reservoirs

Influenza structure

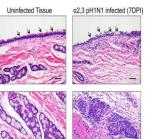

Influenza antigens

- Subtypes are named for surface proteins, ex: HÍN1
- Hemagglutinin = binds to epithelial cells • All 15 infect birds, only 6 infect humans
 - •H1, H2, H3 most common
- <u>Neuraminidase</u> = opens host cells to free new virions
 - All 9 infect birds, only 3 infect humans
 - N1, N2 most common


Influenza virus binding to host cell


Influenza virus opening host cell to release newly formed virions

Influenza life cycle


- 2. Endocytosis 3. M2 proteins uncoat
- 4. Viral replication
- 5. New virus assembled
- 6. NA buds and releases

Naming influenza strains

Influenza pathology

- Necrosis of
 epithelial cells
- Severe inflammation in mucosal glands

Influenza pathogenicity

Signs & symptoms

- •Fever
- Chills
- Muscle aches
- Cough, congestion
- Runny nose
- •Headache
- Fatigue

Complications

- Dehydration
- Pneumonia
- Acute bronchitis
- Sinus infections
- •Ear infections
- Worsening of
- chronic conditions

Transmission

Respiratory droplets

Why Winter?

- •Cold air
- •Dry air
- More time indoors
- •Crowded conditions
- •Decreased immune systems

Disinfecting surfaces

Is it really the flu, or just a cold?

Signs/symptoms	<u>Influenza</u>	Common cold
Onset	Abrupt	Gradual
Fever	Usual, 3-4 days	Rare
Aches, fatigue	Usual, severe	Slight
Chills	Common	Rare
Rhinitis	Common	Common
Sore throat	Sometimes	Common
Cough	Usual, severe	Mild
Headache	Common	Rare

Diagnosis

Rapid tests

- •Detect viral antigens
- •POCT
- •Better detection in children than adults
- •TAT 10-15 mins

Diagnosis

PCR

- Detect viral RNA
- •Best sensitivity and specificity
- Flu/RSV combo
- •TAT 30 mins

Prevention

Vaccinations are a MUST every year

- Unpredictable virus
- Antibodies form in 2 weeks, remain constant, then gradually decline
- Immunity from vaccine ~ 1 year
 - All persons 6 months or older should be vaccinated
 - 2nd booster vaccine when necessary
 - High dose shot for elderly

Flu Vaccine

- Available in trivalent and guadrivalent formulations
- •2017-2018 vaccine: A/Michigan/45/2015 (H1N1)pdm09-like virus trivalent quadrivalent A/Hong Kong/4801/2014 (H3N2)-like virus B/Brisbane/60/2008-like virus

B/Phuket/3073/2013-like virus

Flu Vaccine

2017-2018 Vaccine

A/Michigan/45/2015 (H1N1)pdm09-like virus

A/Hong Kong/4801/2014 (H3N2)-like virus

A/Hong Kong/4801/2014 (H3N2)-like virus

(H1N1)pdm09-like virus

2016-2017 Vaccine

A/California/7/2009

B/Brisbane/60/2008-like virus

B/Phuket/3073/2013-like virus

B/Brisbane/60/2008-like

virus

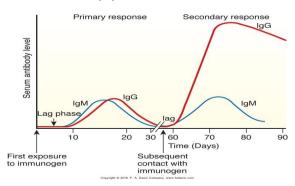
B/Phuket/3073/2013-like virus

How Flu Vaccines are made

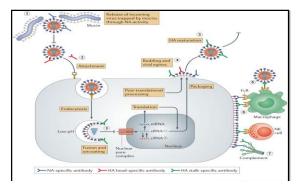
- 1) Egg based flu vaccines • Grown in chicken eggs
 - •70+ years
- 2) Cell based flu vaccines •Grown in mammalian cells •FDA approval August 2016
- 3) Recombinant flu vaccines •Grown in insect eggs
 - •Since 2013

How are vaccine viruses selected?

- Year-round surveillance of influenza
- WHO Centers for Reference & Research on Influenza
 - Atlanta, Georgia, USA (Centers for Disease Control and Prevention, CDC)
 - London, United Kingdom (The Francis Crick Institute)
 - Melbourne, Australia (Victoria Infectious Diseases Reference Laboratory)
 - Tokyo, Japan (National Institute for Infectious Diseases)
 - Beijing, China (National Institute for Viral Disease Control and Prevention)


Viral evolution

- •Antigenic drift: minor genetic
- changes to HA/NA antigens
- •Gradual, continuous change over time
- •Lack of proofreading in replication
- •Silent mutations in HA/NA proteins
- •Occurs in A and B virus types
- Cause of yearly epidemics
- •Cause of infection even after vaccine


Flu Vaccine options

- Standard-dose shot
- •High-dose trivalent shot
- •Recombinant trivalent shot
- •Trivalent shot w/adjuvant
- •Standard-dose quadrivalent shot
- •Intradermal quadrivalent shot

Antibody protection

Antibody protection against influenza

CDC recommendations

High risk pop.

• Adults over 65

- Children under 2
- Pregnant women
- Nursing home and LTAC residents
- Immunocompromised persons

Options

- Only injectable
- vaccines recommended
- •Nasal spray vax is
- NOT recommended
- •Egg-free options
- High dose for elderly
- •Generic Tamiflu
- now available

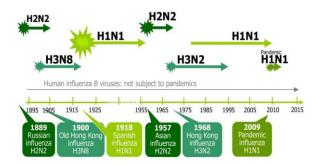
Herd Immunity

Percent vaccinated: 75%

HOW IT WORKS:

Percent vaccinated: 25%

Blue = unvaccinated

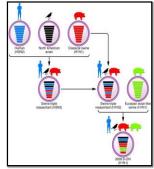

Black = infected

Yellow = vaccinated

Percent vaccinated: 95%

Percent vaccinated: 50%

Threat of a future pandemic


Viral evolution

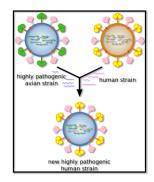
• Antigenic shift: major change to virus

- •Reassortment of viral genes
- •Sudden change
- •Rapid infection in population
- •Occurs in type A virus only
- •Origin of novel viruses
- •Cause of pandemics
- ·Limited to no protection from vaccine

Influenza Virus Reassortment

- How antigenic shift
 occurs
- Domestic pigs and birds are mixing vessel for new combination of influenza viral genes
- 2009 H1N1 pandemic virus contained avian, swine, and human flu genes

Deadly Avian flu?


- Highly pathogenic avian influenza (HPAI)
- Wild aquatic waterfowl and domestic poultry are reservoirs for influenza type A
- Genetically different from viruses that cause human infection...for now...

H5N1 H7N9

Pandemic potential

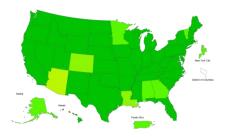
- Animal is coinfected with genetically different viruses
- •Reassortment occurs
- •Novel virus emerges
 - Ability to directly infect humans
 Human-to-human
 - transmission

Threat of a future pandemic

HPAI Asian H5N1

Endemic in poultry
700 human infections since 2003
Most cases from direct or close contact with sick or dead poultry
Person-to-person transmission is rare, limited, and not sustained

• Pandemic potential if genetic reassortment of avian H5N1 and human influenza A


Threat of a future pandemic

HPAI Asian H7N9

Endemic in poultry in China
5th epidemic in China currently
1562 human infections since 2013
Most cases from direct or close contact with sick or dead poultry
Person-to-person transmission is limited and not sustained

•Greater pandemic potential than H5N1

https://gis.cdc.gov/grasp/fluview/ma in.html

Additional Info

- •WHO Influenza http://www.who.int/influenza/en/
- •CDC Seasonal Influenza Resource https://www.cdc.gov/flu/index.htm
- •Louisiana DHH http://ldh.louisiana.gov/index.cfm/pag e/1591

Thank you for listening!

Kristin Butler, MLS (ASCP)^{cm} Department of Clinical Laboratory Science School of Allied Health Professions LSU Health Sciences Center (318) 813-2919 kbutl1@lsuhsc.edu

