

Interpretation of the CBC

Lee Ellen Brunson-Sicilia, MHS, MLS(ASCP)CM

Objectives

- Discuss the different parts of the complete blood count and how to interpret them.
- Describe factors and conditions that may impact CBC results.
- Describe the roles of peripheral blood cells.

Complete Blood Count (CBC)

- One of the most commonly ordered laboratory tests and the most ordered test in the hematology lab.
- Measure of the cellular components in the blood: WBC, RBC and PLT
- Also provides additional information about properties of RBC.

Specimen Collection

- EDTA
- Mix, Mix, Mix!
- Test within 6-8 hours
- Room temperature

Specimen Processing - Preanalytical

Automated Analysis

 Specimens are placed on the hematology analyzer to be tested

Purpose of manual microscopy

- Confirm WBC and PLT values from analyzer
- Visualize RBC morphology
 - Size
 - Coloration
 - Shape(s)
- Assess WBC present
- Individual cell types
- WBC maturation stages
- Abnormal appearance

- Red Blood Cells
- Deliver oxygen throughout body
- RR: 4.5 5.5 million/µL
- 120 day lifespan
- Higher in males, newborns
- Diurnal variation

Reticulocytes

- Immature RBCs
- Indicate marrow activity
- ~0.5-2.5% of all RBCs
- Polychromasia
 - Blue = new
- Confirm with analyzer retic count

Hemoglobin (Hgb)

- Carries oxygen within the RBC
- Heme = contains O₂ and iron (red pigment)
- Globin = protein
- Lab value assesses Hgb composition

- Males: 14-18g/dL
- Females: 12-16g/dL
- Newborns highest

Diurnal variation

Hematocrit (Hct)

- Proportion of RBCs to plasma
- Used to assess extent of patient's blood loss
- Reference Range: 36 52% • Males: 42 - 52%
 - Females: 36 47%
- Diurnal variation
- May be unitless (0.42)

Decreased RBC, HGB, HCT

Anemia

- Chronic blood loss
- Acute hemorrhage
- Hemolysis
- Bone marrow suppression
- Nutrient deficiency (B₁₂, folic acid, iron)

Rule of Three Examples			
Patient A	Patient B		
RBC: 3.18	RBC: 1.79		
Hgb: 8.1	Hgb: 8.7		
Hct: 24.6	Hct: 41.0		

Rule of Three Examples, cont.

Patient C	Patient D	
RBC: 4.27	RBC: 5.26	
Hgb: 13.3	Hgb: 12.8	
Hct: 30.7	Hct: 47.8	

RDW \rightarrow RBC Distribution Width

- Measure of anisocytosis → condition which RBCs are unequal in size
- Distinguishes hereditary RBC defect from acquired
- RR: 12% 15%
 - High RDW \rightarrow more variation in size

Variation in RBC size: anisocytosis

RBC Indices

- Description of RBC morphology
- What is the overall size of the RBCs?
- How much Hgb do the RBCs contain?
- Calculated using RBC, Hgb, Hct

MCV \rightarrow Mean cell volume • Average RBC volume • RR: 80 – 100 fL (normocytic) • \uparrow - macrocytic • \checkmark - microcytic MCV = Hct x 10 RBC

MCV

- MCV = <u>Average</u> cell volume
- Large + small will average normal!
- Refer to the RDW

MCH \rightarrow Mean Cell Hemoglobin

- Amount of hemoglobin within RBC
- Correlates with MCV result
 - $\,\cdot\,$ Smaller the cell \rightarrow less Hgb $\rightarrow\,$ lower MCH
- RR: 28 34 pg

$MCH = \frac{Hgb \times 10}{RBC}$

MCHC → Mean Cell Hemoglobin Concentration

- Mean Hgb concentration of RBC
- RR: 32 36 g/dL
- Normal MCHC → normochromic
- Low MCHC → hypochromic
- High MCHC → hyperchromic

 $MCHC = \frac{Hgb \times 100}{Hct}$

Normocytic/normochromic anemia RBC: 0.77 Hgb: 2.2 Hct: 6.6 MCV: 87 MCH: 29 MCHC: 33

RDW: 13.7

Microcytic/hypochromic anemia

Macrocytic/normochromic anemia

RBC: 1.05 Hgb: 5.9 Hct: 16.7 MCV: 158.7 MCH: 56.2 MCHC: 35.4 RDW: 31.5

normal red cells macrocytic red cells

WBC (White Blood Cells)

- TOTAL <u>leukocyte</u> count
- 5 subtypes
- All stages of maturity
- RR: 4,500-11,000/µL
- Lifespan: hours to a few days

LeukopeniaImage: Decreased WBCsImage: Decrea

Neutrophils

- Predominant WBC in adults
- Phagocytosis
- Bacterial infections
- "Left shift"

Lymphocytes

- Predominant WBC in pediatrics
- Viral infections
- Acute lymphoid leukemia (ALL)
- Chronic lymphoid leukemia (CLL)
- Inversion (reverse diff)
 - Adults with lymphs>neutrophils

Lymphocytes

Atypical (reactive) lymphs are indicative of anti-viral activity.

Monocytes

- Tissue macrophage
- Phagocytic
- Increase with neutrophils in infections
- Chronic inflammation
- Malignancies

Eosinophils

- Higher levels in newborns
- Allergic reactions
- Asthma
- Parasitic infections
- Chronic myeloid leukemia (CML)

Basophils

- Least numerous of leukocytes
- Inflammatory response → IgE
- Contribute to severity of allergic reactions

Leukocyte Differential

- Automated or manual: 5-part diffs
- Relative expressed in %
- Absolute expressed in cell # per volume
- Use WBC and relative counts to obtain absolute values

Leukocyte	e Differential	
WBC NE LY MO EO BA	7.1 (x10 ³ /µL) 66.0% 25.6% 7.5% 0.6% 0.3%	 Relative values

Leukocyte Differential

 Absolute counts reflect true increase or decrease of each specific WBC

Ex: Absolute lymph = % lymph x total WBC

Absolute vs. Relative

<u>Patient A</u> WBC: 3.0 x 10³/µL 60% lymphs 1,800/µL <u>Patient B</u> WBC: 9.0 x 10³/μL 60% lymphs 5,400/μL

Leukocyte Differential Reference Ranges

	Relative RR %	Absolute RR #/µL
Total WBC		4,500 - 11,000
Neutrophils	40 - 80	1,800 - 8,800
Lymphocytes	25 - 45	1,125 - 4,950
Monocytes	2-10	90 - 1,100
Eosinophils	0 - 5	0 - 550
Basophils	0 - 2	0 - 220

Platelets

- Thrombocytes
- Role in cessation of bleeding
- RR: 150,000 450,000/μL
- 1-2 week lifespan
- Easily miscounted (manual and automated)

Platelets, cont.

- Thrombocytopenia risk of bleeding
- Thrombocytosis risk of inappropriate clotting
- Mean platelet volume (MPV)
 - RR: ~8-12 fL
 - Average volume of circulating PLTs
 - Analogous to MCV
 - Inc MPV PLT destruction
 - Dec MPV impaired PLT production

Automation in Hematology

- Prior to 1950, hematology testing was comprised of several manual testing methods.
 - · Cell counts with hemacytometers
 - Spun hematocrits
 - Spectrophotometric hemoglobin concentration
 - Microscopic blood smear evaluation
- Today, automation provides data with increased reliability, precision, and accuracy.

Automated Hematology Instruments

- Primary testing vehicle in hematology lab
- Automated instruments can perform CBC including:
 - RBC count
 - RBC indices (MCV, MCH, MCHC, RDW)
 - Platelet count, MPV
 - WBC count
 - Five-part leukocyte differential
 - Reticulocyte count

Automated Blood Cell Counting Instruments

- Two principles of cell counting currently used:
 - <u>Impedance</u> based on the break in current that occurs when a poorly conductive blood cell passes through an electrical field
 - <u>Optical light scattering</u> based on light scattering measurements obtained as a single blood cell passes through a beam of light (optical or laser)

Coulter/Impedance Analyzers

- A poorly conductive blood cell passes through an aperture.
- Produces an increase in impedance between internal and external electrodes
- Strength of pulse is proportional cell volume/size
- Number of pulses is cell count

Electrical Impedance

Coulter/Impedance Analyzers, cont.

- Small volume of EDTA blood sample is aspirated and diluted in an electrically conductive diluent.
- Then divided into 4 aliquots:
 - RBC/PLT chamber
 - WBC/Hgb chamber
 - Mixing chamber differential
 - Reticulocyte dilution chamber
- Within each chamber are internal and external electrodes

Coulter cell counts

- · Blood diluted in an electrically conductive diluent
- Charge is created between internal and external electrodes
- Three apertures (in each chamber); three separate counts
- If all agree, average of results reported
- Histogram generated based on cell volume and cell number in aspirated specimen volume

Cell counting chambers

- RBC/PLT chamber aliquot #1
 - RBC/PLT counted
- WBC/HGB chamber aliquot #2
 - RBCs lysed
 - Hgb directly measured by spectrophotometry
 - WBCs counted

Coulter cell counts

- **RBC count:** > 35 fL counted as RBCs
- **PLT count:** Particles between 2–20 fL are counted
- WBC count: >35 fL counted as WBCs

WBC histogram

- WBC count histogram 3-part differential Allows visualization of subpopulations of cells based on WBC relative sizes
 - Lymphocytes 35-90 fL
 - Monocytes 90-160 fL
 - Granulocytes 160-450 fL
 - Neutrophils
 - Eosinophils
 - Basophils
 - Immatures

Coulter/Impedance Analyzers

- RBC count directly measured
- HCT directly measured
 - MCV and RDW derived from RBC histogram
 - HCT calculated from MCV and RBC count
 - MCH calculated from RBC count and Hgb
 - MCHC calculated from Hgb and HCT
- WBC count directly measured
 - % of WBC types derived from WBC histogram
- PLT count directly measured

Mixing chamber - 5-part diff

- Aliquot #3 mixed gently with a lysing reagent to lyse RBC
- Stabilizing reagent added to preserve WBC integrity
- · Cells pass one-by-one through a laser beam
- · Light shines through cell, is measured by detectors
- Light scatter characteristics give information about cell type
 - Cell surface
 - Cell shape and size
- Cell granularity
- Cells are counted and classified WBC differential

Reticulocyte counts

- Aliquot #4 goes to the reticulocyte dilution chamber
- Is stained with reticulocyte stain new methylene blue
- Residual RNA precipitates within reticulocytes
- Cells go through flow cytometer similar to WBC
- RNA aggregates, if present, scatter light
- Cells counted one-by-one

Troubleshooting - Factors that may lead to abnormal values:		
<u>Hemoglobin</u>	Hematocrit	
• False inc:	False inc:	
 Tourniquet on too long 	 Tourniquet on too long 	
	 High altitude 	
 High altitude 	 Smokers 	
 Smokers 	 Dehydration 	
 Lipemia 	False dec:	
	 Collection from IV arm 	
	Pregnancy	

Sources of error on the CBC

- Preanalytical errors
- Nucleated RBC
- Cold agglutinin disease
- Platelet satellitism
- Macroplatelets
- Microplatelets

Reference Ranges - CBC

WBC count:	4.5 - 11.0 (x10 ³ /μL)
RBC count:	4.0 - 5.5 (x10 ⁶ /μL)
Hgb:	12 - 18 g/dL
Hct:	36 - 52%
MCH:	28 - 34 pg
MCHC:	32 - 36 g/dL
MCV:	80 - 100 fL
RDW:	12 - 15%
PLT:	150 - 450 (x10 ³ /μL)
PLT:	150 – 450 (x10³/μL)
Relative retic count:	0.5 – 2.5%

Reference Ranges - CBC

Segmented neutrophils (Polys):	40 – 80%
Band Neutrophils:	0 – 5%
Lymphocytes:	25 – 45%
Monocytes:	2 – 10%
Eosinophils:	0 – 5%
Basophils:	0 – 2%

Any questions?

