MULTIPLE MYELOMA: WHAT'S NEW?

GRACE B. ATHAS, PH.D. MLS DEPARTMENT OF PATHOLOGY, LSUHSC CLPC SPRING SEMINAR SERIES, 2018

LEARNING OBJECTIVES

- Review pathophysiology and lab diagnosis of plasma cell neoplasms with a focus on Multiple Myeloma
- Identify new molecular and Cytologic findings in Multiple Myeloma
- Identify targeted treatments based on molecular findings in Multiple Myeloma

PLASMA CELL (MULTIPLE) MYELOMA / Knowledge Is Power • In US • Most common lymphoid malignancy in Second most common blood cancer 229,460 African Americans; second in Caucasians worldwide 114,250 • African Americans 2 x more than Caucasians 95,688 30,330 • Adults, usually > 50 years • Median age 68 n rates Five-year survival rates have increased • Rare in adults before age 35 • NOT found in children in men 🗰 65-74 🏠 African • M/F ratio 3:2) Myeloma • Median survival 3-4 years

ETIOLOGY OF MM

- Genetic causes ?
- Extension of MGUS
- Environmental/occupational exposures
- Radiation
- Chronic inflammation
- Infection (HH8)

PLASMA CELL NEOPLASMS DIAGNOSIS

- Pathological
- Clinical
- Radiological
- Molecular/Cytogenetic

LAB EVALUATION FOR A SUSPECTED PLASMA CELL DISORDER

- Serum and urine protein electrophoresis
- Serum and urine immunofixation and Ig quantification and light chain types
- Serum free light chains
- Bone marrow examination
- Other labs

14

MORE ABOUT MONOCLONAL PROTEINS IN MM

- 75-85% have serum monoclonal IG
 - IgG >>> IgA; other types rare
 - Both heavy and light chain
 - Paraprotein –M component- M Spike –Monoclonal Spike –on electrophoresis
- 10-20% make light chains only
 - Rapid renal excretion
 - Serum paraprotein may be absent
 - Found on urine electrophoresis (UPEP)
- 5% Non-secretory myeloma (rare)
- Other causes of monoclonal proteins
 - B cell lymphomas
 - Autoimmune disease
 - HIV infection

SERUM FREE LIGHT CHAINS

- + 2 types of light chains, kappa or κ and lambda or λ
- Each plasma cell produces only one type of heavy and light chain
- Heavy and light chains are produced separately within the plasma cells and are assembled to form a whole ("intact") immunoglobulin
- Light chains attached to heavy chains: "bound light chains"
- Light chains not attached to the heavy chains: "FREE LIGHT CHAINS"
- Plasma cells typically produce more light chains than are required to create whole immunoglobulins or monoclonal proteins
- THE EXCESS LIGHT CHAINS ENTER THE BLOODSTREAM AS "FREE LIGHT CHAINS"
 For myeloma patients, the amount of free light chain production is linked to the
- activity of myeloma cell growth: • The more myeloma cells, the greater the production of monoclonal protein.

OTHER LAB FINDINGS

- CBC Anemia, leukocytopenia
- CMP Hypercalcemia , increased levels of total protein, decreased albumin, increased BUN, creatinine, uric acid
- ESR (elevated) >100
- 24-hour urine collection for quantification of the Bence Jones protein (light chains), protein, and creatinine clearance
- Markers of cell turnover/destruction Uric acid, LDH

OTHER LAB FINDINGS

- Altered albumin to globulin ration
- β2 microglobulin -Surrogate marker for tumor burden
- CRP Surrogate marker for IL-6 (IL-6 is a plasma cell growth factor)
- Serum viscosity (with very high M protein) CNS symptoms

PLASMA CELL MYELOMA, SYMPTOMATIC, CLINICAL SIGNS AND SYMPTOMS

COMMON

- Bone pain (back, long bones, pelvis) and pathological fractures
- Weakness, dizziness, fatigue (anemia)
 Dehydration, urinary frequency (renal failure)
- Headache
- Infections (depressed normal immunoglobulin production, leukocytopenia Fever
- LESS COMMON

 - Acute hypercalcemia
 - Symptomatic hyperviscosity
 - Neuropathy
 - Amyloidosis Coagulopathy

AMYLOIDOSIS

- Caused by a plasma cell that secretes light chains (common) or heavy chains (rare)
- Most commonly, light chains deposit in tissue as beta-pleated sheets
- Called "AL" amyloid for "Amyloid Light" chains
- Adults over 40, male predominance
- Clinical findings relate to deposition of amyloid in organs -Kidney in MM

PATHOPHYSIOLOGY Table 2. Schema of pathophysiology Solitary or multiple osteolytic lesions **Skeletal Findings** Diffuse osteoporosis (osteopenia) Associated Effects of Bone Destruction Bone fractures Loss of height (vertebral collapse) Bevated serum calcium Hypercaliuria (calcium increase in urine) Soft tissue involvement, mostly common in head/neck area (e.g., nasopharynx); also in liver, kidney, and other soft tissue sites including skin Extr medullary askeletal) mia - Thrombocytopenia ormal dotting - Plasma cell leukemia openia - Circulating plasma ce eral Blood lating monoclonal B lymphoc cursors of myeloma cells1 Circu (pred) Monocional immunoglobulins (IgG, IgA, IgD, IgE, IgM or light chains only) - Elevated serum IL-6 and C-reactive protein (CRP Amyloidosis or light chain deposition and renal dysfunction Proteinuria, casts without leukocyte or erythrocytes Tubular dysfunction with acidosis (Fanconi syndrome) idney Ab

PLASMA CELL MYELOMA, SYMPTOMATIC – RADIOLOGIC SIGNS

• Lytic bone lesions seen on X-ray

CALCIUM

- \bullet Lysis of bone leads to increased calcium in the blood
- \bullet 30% of patients have at time at presentation
- \bullet Key factors IL6, IL1, RANKL, MIP1 α and osteoblastic dysfunction

RENAL DYSFUNCTION: CAUSES OF RENAL FAILURE IN MM

- Cast nephropathy
- Light chain deposition disease
- Primary amyloidosis
- Hypercalcemia
- Renal tubular dysfunction
- Volume depletion
- IV contrast dye, nephrotoxic meds

MYELOMA KIDNEY

- Two main pathologic mechanisms:
 - Intracellular cast formation
 - Direct tubular toxicity by light chains
- Contributing factors to presence of renal failure due to multiple myeloma:
 - High rate of light chain excretion (tumor load)
 - Biochemical characteristics of light chain
 - Concurrent volume depletion

CAST NEPHROPATHY

- Most common pathological diagnosis on renal biopsy in multiple myeloma
- Due to light chains binding with Tamm-Horsfall mucoprotein, which is secreted by tubular cells in ascending loop of Henle, forming casts
- Multinucleated giant cells surround the casts
- Dehydration worsens cast nephropathy due to decreased flow in tubules, increased concentration of light chains

MONOCLONAL GAMMOPATHY OF UNDETERMINED SIGNIFICANCE (MGUS)

- Very common (5% of people over 70)
 Usually elderly patients with no symptoms
- African Americans > Caucasians (twice)
- Small monoclonal spike (IgG most common)
- Less than 10% clonal plasma cells in marrow
 No myeloma related organ/tissue impairment –NO CRAB
- CRAB: Hyper<u>C</u>alcemia, <u>R</u>enal insufficiency, <u>A</u>nemia, Bone lesions

No evidence of other B-cell proliferative disorder Increased risk for developing myeloma

Asymptomatic (Smoldering) Plasma Cell Myeloma

M-protein in serum at myeloma levels $IgG \ge 3 g/dL$, $IgA \ge 1 g/dL$) AND/OR

10% or more clonal plasma cells in marrow

NO related organ or tissue impairment -NO CRAB

UPDATED CRITERIA FOR DIAGNOSIS OF MULTIPLE MYELOMA -**REVISED INTERNATIONAL STAGING SYSTEM FOR MULTIPLE MYELOMA R-ISS**

- From international cancer expert groups IMWG & NCCN, 2016
- Added new biomarkers to the existing requirement for CRAB features
- These biomarkers were associated with inevitable development of CRAB in patients with smoldering myeloma
- ${}^{\bullet}$ The presence of 10% plasma cells in bone marrow, and any of the CRAB or any of the new 3 markers justifies the beginning of treatment
- Start treatment **<u>early</u>** before have end organ effects
- Updated laboratory and radiological variables

MYELOMA DEFINING EVENTS (MDE)-"SLIMCRAB"

• In the absence of "CRAB", the SLIM criteria may be used

- Sixty percent (\geq 60%) clonal plasma Bone marrow cells
- Li Serum free Light chain ratio involved : uninvolved \geq 100
- M 1 focal lesion (≥ 5mm each) detected by MRI
- Don't have to wait for end organ damage (CRAB) to start treatment
- "SLIM CRAB" for diagnosis

CONCEPT OF MYELOMA DEFINING EVENTS (MDES)

Both criteria must be met

FOOTER TEXT

- Clonal bone marrow plasma cells ≥10% or biopsy-proven bony or extramedullary plasmacytoma
 Any one or more of the following myeloma defining events:
 - A Evidence of end organ damage that can be attributed to the underlying plasma cell proliferative disorder, specifically:
 - - Hypercalcemia: serum calcium >0.25 mmol/L (>1 mg/dL) higher than the upper limit of normal or >2.75 mmol/L (>1 mg/dL) Renail insufficiency: creatinine clearance <-04 mL per minute or serum creatrine >177 µmol/L (>2 mg/dL)
 Anemia: henogolion value <-2 g/dL below the lower limit of normal, or a hemoglobin value <-2 g/dL below the lower limit.
 Bone lesions: one or more costedytic lesions on skeletal radiography. Creat below the lower clear clear below the lower limit.
 Com low parrow clears cell clearcentane >60%.

 - B (PETFU) B (Conal bone marrow plasma cell percentage ≥60% C (Innobved: uninvolved serum free light chain (FLC) ratio ≥100 (involved free light chain level must be ≥100 mg/L) D >1 focal lesions on pmagnetic resonance imaging (MRI) studies (at least 5 mm in size)
 - 5/7/2018

CYTOGENETICS TERMINOLOGY

- Hyperdiploid -more than the usual diploid number of chromosomes
- Aneuploid presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46 $\,$
- Trisomy three copies of chromosome
- Deletion- deletion of all or part of a chromosome
- Translocation -rearrangement of parts of chromosomes

	Clinical setti	ing in which abnormality is detected
Cytogenetic abnormality	Smoldering multiple myeloma	Multiple myeloma
Trisomies	Intermediate-risk of progression, median TTP of 3 years	Good prognosis, standard-risk MM, median OS 7-10 years Most have myeloma bone disease at diagnosis Excellent response to lenalidomide-based therapy
t(11;14) (q13;q32)	Standard-risk of progression, median TTP of 5 years	Good prognosis, standard-risk MM, median OS 7-10 years
t(6;14) (p21;q32)	Standard-risk of progression, median TTP of 5 years	Good prognosis, standard-risk MM, median OS 7-10 years
t(4;14) (p16;q32)	High-risk of progression, median TTP of 2 years	Intermediate-risk MA, median OS 5 years Needs bortezonib-based initial therapy, early ASCT (if eligible), followed by bortezonib-based consolidation/maintenance
t(14;16) (q32,q23)	Standard-risk of progression, median TTP of 5 years	High-risk MM, median OS 3 years Associated with high levels of FLC and 25% present with acute renal failure as initial MDE
t(14;20) (q32;q11)	Standard-risk of progression, median TTP of 5 years	High-risk MM, median OS 3 years
Gain(1q21)	High-risk of progression, median TTP of 2 years	Intermediate-risk MM, median OS 5 years
Del(17p)	High-risk of progression, median TTP of 2 years	High-risk MM, median OS 3 years
Trisomies plus any one of the IgH translocations Isolated Monosomy 13,	Standard-risk of progression, median TTP of 5 years Standard-risk of progression,	May ameliorate adverse prognosis conferred by high risk IgH translocations, and del 17p Effect on prognosis is not clear
or Isolated Monosomy 14 Normal	median TTP of 5 years Low-risk of progression,	Good prognosis, probably reflecting low tumor burder

Table 27.3 Risk-Stratifica	tion of Multiple Myeloma	
High Risk	Intermediate Risk	Standard Risk*
7p deletion	t(4;14)	Hyperdiploidy
t(14;16)	Deletion 13 or hypodiploidy by conventional karyotyping	t(11;14) ⁶
t(14;20) High-risk signature on gene expression profiling		t(6;14)
sed on FISH analysis unless specifie DH >ULN and β-2 microglobulin 2 (11;14) may be associated with plas lapted from Kumar SK, Mikhael JR, I nos Stratification of Mveloma and R	d - S.S. may indicate worse prognosis. ma cell leukemia. Budi FK, et al. Management of newly diagnosed sympte Sk-Adaeted Theraev (mSMARD) consensus auidelines.	omatic multiple myeloma: updated Moro Clin Proc. 2009:84:1095-1110

PLASMA CELL MYELOMA PROGNOSIS

- Prognosis:
 - •Median survival \sim 3 years
 - •~ 10% survival for 10 year
 - Survival has increased

CHEMOTHERAPY

 $\label{eq:chemotherapy} \mbox{--the treatment of disease by the use of chemical substances,} especially the treatment of cancer by cytotoxic drugs$

CHEMOTHERAPY TERMINOLGY

- Induction therapy –the 1st treatment given; often a standard set of treatments (or called Front line therapy)
- Consolidation therapy a short course of chemotherapy, helps make the previous chemotherapy treatment and stem cell transplant work better -the goal of this therapy is to sustain a remission
- Maintenance therapy given after a stem cell transplant or after induction therapy in people who don't have a stem cell transplant. A maintenance therapy drug is usually given in a low dose over a long period of time -the goal of this therapy is to sustain a remission
- \bullet Remission all evidence of cancer is gone
- Relapse -a deterioration in someone's state of health after a temporary improvement
- Minimal residual disease MRD –the small number of cancer cells that remain after treatment, responsible for relapse

ALKYLATING AGENTS: MELPHALAN (ALKERAN)

- Nitrogen mustard alkylating agents
- \bullet An alkylating agent adds an alkyl group ($C_n H_{2n+1})$ to DNA –inhibits DNA & RNA synthesis
- Side effects
 - Nausea and vomiting
 - Bone marrow suppression
 - Pulmonary fibrosis
 - Hair loss
 - Myelodysplastic syndrome

STEROIDS (CORTICOSTEROIDS)

- Prednisone and Dexamethasone
- Anti-inflammatory and anti-Myeloma effects
- Help reduce nausea & vomiting
- May be used alone or in combination
- Side effects:
 - High blood sugar
 - Weight gain
 - Insomnia
 - Change in mood
 - Over time, suppress immune system and weaken bones

VAD – STANDARD INDUCTION THERAPY UNTIL RECENTLY

- Vincristine
- Adriamycin
- Dexamethasone

PROTEASOME INHIBITORS - BORTEZOMIB (VELCADE)

- Proteasomes protein complexes that degrade proteins by breaking peptide bonds (proteolysis)
- Proteasome inhibitors -drugs that block the action of proteasome Prevent protein breakdown
- Excess proteins cause cell cycle arrest and apoptosis
- ${}^{\bullet}$ Boron atom binds to the catalytic site of the 26S proteosome

BORTEZOMIB (VELCADE)

- First approved proteasome inhibitor, 2003
- Potentiates sensitivity to both conventional and novel therapeutic agents
- IV or subQ
- Mechanism of action:
 - Inhibits the 26S proteasome
 - Prevents proteolysis of proteins targeted (by ubquitinylation) for removal
 - Disrupts homeostasis; leads to apoptosis
- Side effects:
 - Peripheral neuropathy
 - Bone marrow suppression
 - Herpres Zoster infections due to immunocompromise

IMMUNOMODULATORY AGENTS

- Immunomodulatory agents (IMiDs)
- Have become a key part of the treatment regimen for multiple myeloma.
- Stimulate natural killer cells and activate T cells reducing the growth of myeloma cells

4 NEW DRUGS APPROVED IN 2015

- \bullet Panibostat deacetylase inhibitor, in combination with Bortuzimab and Dex
- Ixazomib —oral proteasome inhibitor, in combination with lenalinomide and Dex
- \bullet Elotuzumab Mab that targets signaling lymphocyte activation molecule F7(SLAMF7), in combination with lenalinomide and Dex
- Daratumab Mab targeting CD38, single angent

Menoclonal antibody Antigenic target Constrained Karper (CS-1) Constrained Safety (CS-1) Safety (CS	MONOC	CLONAL ANTIBO "Targeti	DIES ng" mAbs	
Ibility SLAMF7 (CS-1) Deratinumab CD38 Siltuximab IL-6 Torilizumab IL-6R Decetuzumab CD40 MAS MUC-1 BT-062* CD138 IPH-2101† KIR	_^	Monoclonal antibody	Antigenic target	
CD38 SAR60984 Siltuximab IL-8 Tooliizumab IL-8 Dacetuzumab CD40 MA5 MUC-1 BT-062" CD138 IPH-2101† KIR * Immunotoxin conjugate	2	Elotuzumab	SLAMF7 (CS-1)	
Siltuximab IL-6 Tocilizumab IL-6R Dacetuzumab CD40 MA5 MUC-1 BT-062°* CD139 IPH-2101† KIR	Z	Daratumumab SAR650984	CD38	
Tocilizumab IL-6R Dacetuzumab CD40 MA5 MUC-1 BT-062* CD138 IPH-2101† KIR		Siltuximab	IL-6	
Dacetuzumab CD40 MA5 MUC-1 BT-682* CD138 IPH-21011 KIR * Immunotoxin conjugate		Tocilizumab	IL-6R	
MA5 MUC-1 BT-062" CD138 IPH-2101† KIR * Immunotoxin conjugate		Dacetuzumab	CD40	
BT-062* CD138 IPH-2101† KIR * Immunotoxin conjugate		MA5	MUC-1	
IPH-2101† KIR * Immunotoxin conjugate		BT-062*	CD138	
* Immunotoxin conjugate		IPH-2101†	KIR	
		* Immunotoxin conjugate		

DARATUMUMAB, DARA (DARZALEX)

- Human IgG antibody (mAB) that targets **CD38**
- CD38 a transmembrane protein abundantly expressed on malignant plasma cells; also functions in cell adhesion, signal transduction, and calcium signaling

• IV infusion

• Works well in combination or as a single agent

interf	erence in	DARA-	patient s	amples
Patient	DARA dose (mg/kg/wk)	Days from last dose	Ab screen & panel result	Panel result using DTT-RBCs
1	8	7	Panreactivity	Negative
2	8	7	Panreactivity	Negative
3	8	13	Panreactivity	Negative
4	16	0	Panreactivity	Negative
5	16	0	Panreactivity	Negative
			Chapuy 2015,	Transfusion 55:154

	TABLE 4. DTT-sensitive blood gro	up systems*
Blood group system name	ISBT symbol	Transfusion reaction potential
Dombrock	DO	Immediate/delayed, mild to severe
Indian	IN	Very rare, decreased cell survival with IN
John Milton Hagen	JMH	Delayed (rare)
Kell	KEL	Immediate/delayed, mild to severe
Knops	KN	No
Landsteiner-Wiener	LW	Delayed, none to mild
Lutheran	LU	No to moderate
Raph	RAPH	No to moderate
Cartwright	YT	Delayed (rare); mild

MANAGING PATIENTS ON DARATUMUMAB

- Anti-CD38 interference may cause delays in issuing RBCs
- Before a patient begins anti-CD38 treatment
 - Perform baseline ABORh and antibody screen
 - Perform baseline genotype
- After a patient has begun anti-CD38 treatment
 - ABORh performed normally
 - Perform antibody screen and identification using DTT treated RBCs

MANAGING PATIENTS ON DARATUMUMAB

Crossmatch

79

- Antibody screen negative (using DTT-treated cells)
- IS or electronic crossmatch ABORh compatible, K matched RBCs
 Known alloantibody
 - Give phenotypically similar RBCs
 - May perform AHG crossmatch using DTT-treated donor cells
- Transfusion emergently required: uncrossmatched ABORh compatible RBCs can be given per local transfusion service practices

MANAGING PATIENTS ON DARATUMUMAB

- Hospitals should establish procedures to inform the transfusion service whenever any patient is scheduled to begin taking daratumumab
- Set up notification in EMR when Daratumumab is ordered by physician for ABORh, Antibody Screen, DAT, and genotyping testing to be ordered
- Daratumumab-mediated positive indirect globulin tests **may persist** for up to six months after the last daratumumab infusion
- Provide wallet card to patient to notify other blood of potential interference with testing and results of genotype/phenotype

OTHER DRUGS IN DEVELOPMENT

- Selective inhibitor on nuclear export (SINE) Selinexor
- Checkpoint inhibitors
- Vaccines against MAGE-A3 protein, found on the surface of
- multiple myeloma cells in high-risk patients

Table 12. Clinical trial phases

- I Early testing to assess dosing, tolerance, and toxicity in patients
- II Further testing to evaluate how effective treatment is at the dose and schedule selected
- treatment is at the dose and schedule selected
- Comparison of the new treatment with prior III treatment(s) to determine if the new treatment
- is superior
- Usually carried out after FDA approval to assess cost-effectiveness, quality of life impact, and other comparative issues

ADOPTIVE T CELL THERAPY

- In clinical trials in myeloma & other cancers
- Patients have their T cells removed and activated with chimeric antigen receptors (CARs)
- CARs are proteins that allow T cells to recognize a specific antigen on tumor cells (CD19, CD38, CD40, CD44, CD47, ICAM1, NCAM1, CD74, CD81, CD86, CD200, IGF1R, CD307, CD317, SLAM7, PD-L1, CD138, and B-cell membrane antigen, BCMA)
- These cells are then reintroduced into the body, they will start multiplying, and with help from the engineered receptor, will locate tumor cells with the targeted antigen and destroy them

	Toble 10. High-Dose Therapy	(HDT)
TRANSPLANT TYPE	ADVANTAGES	DISADNANTAGES
Single Autologous	 SVN-excellent remissions - RT least as good as standard therapy regarding central survival and probably better for patients with high S[20] - Raish for strategies to produce true remission or long-term cure - New preparative regiments may produce true complete resistant 	- Relapse pattern similar to standard chemotherapy - More toal: caid expensive - Patients who decisively benefit from transplant not cairyl identified - Maintenance therapy may still be required inecummended
Double Autologous	2002 update of French data indicates survival benefit for subset of patients not in CR or VGPR Excellent results with tandem transplant (see text)	Role of double versus single still unclear Much more toxic and expensive versus single No survival benefit if in CR or VGPR after first transplant
Traditional Allogeneic	No risk of contamination of marrow/stem onlis with myeloma Possible gual-versus-myeloma effect to prolong remission	Even for HLA identical sibling, significant risk of early complications and even death Risk of complications unpredictable Restricted to age < 55 More toolc and expensive versus autologous
Reduced-intensity conditioning (RC) allogeneic transplant or "Mini-Allo"	Less toxic form of allo Preparative chemotherapy usually well tolerated Results in anti-myeloma immune graft	Still produces graft-versus-host disease Full benefits still unclear Rok of initial mortality approximately 17% Not recommended for mysioma patients outside the context of a clinical stal
Identical Twin	No risk of myeloma contamination in transplanted cells Much less risks than allowensic transplant	 No graft-versus-myeloma effect Need identical twin < 55

THE IDEAL TUMOR MARKER

• Testing requirements:

- Easily available source of tissue e.g., blood sample
- Simple and reproducible test
- Accurate
- Clinical requirements:
 - Found in nearly all patients
 - Accurately correlates with disease to:
 Predict patient outcome
 - Monitor response to treatment

B-CELL MATURATION ANTIGEN, BCMA

- A tumor marker for myeloma (?)
 - $\ensuremath{^\bullet}$ Shed from tumor cells into the blood
 - Correlates with disease status
 - Accurately measures the current disease status
 - Can be used to quickly determine response to treatment
 - In vitro studies promising
- Phase I clinical trial for use in CAR therapy and antibody conjugate (2017)

SUPPORTIVE THERAPY

- Aspirin
- Calcium supplements and Bisphonates monthly for 1 year, then q 3 months • Dental evaluation before to avoid dental extractions & risk of osteonecrosis
- Surgery to repair fractures
- \bullet Kyphoplasty/Vertebroplasty for vertebral body compression fractures
- Acyclovir with Bortexomid (Velcade)
- Intravenous immunoglobulin prophylaxis for frequent infections
- Dialysis
- Collect stem cells BEFORE too much myelotoxic therapy (avoid mel and >4 cycles REV)

CONCLUSIONS

- Between the 1960's and the 1990's, the prognosis MM survival was dismal
- ${\ensuremath{\bullet}}$ Survival improved with high dose chemo and Stem cell transplant
- $\ensuremath{^\bullet}$ Survival is improving with these newer agents and SCT
- Huge advances in MM treatment but patients still relapse, so newer treatments/combos are being studied

QUESTIONS?	10 STEPS TO BETTER CARE A UNIQUE TOOL FOR DIAGNOSTIC AND TREATMENT INFORMATION	
	One of the most daunting aspects of being diagnosed with multiple myekona is learning about - and understanding - an unfemiliar disease that is quite complicated. From diagnosis to long-term survival, the 10 Steps to Better Care* will guide you through the myekona journey.	
	Loose who you're dealersy white, and the correct dispress. Justice you early used: Looper and you early used: Looper and the test of part & Looper and the test of part & Looper and the test of part & Looper and the test of test o	
	diagnosis, and proceed through the integrit to issues the direct texts, treathment, supporter carcer and direct which constrained and direct texts, treathment, As always, the international specificant incondents (HM) using you to theorem all model lawares through which may consider the other proposed with the twick to understand and internationage providences which the other issues and the specificant of the other strategy pro- ress that the twick to understand and internationage pro- ress that the specificant of the other strategy pro- ession of the specificant of the specificant of the other quantities are consenses. The MM is here to help.	