

OBJECTIVES

- Evaluate interesting cases that are observed in the clinical chemistry department.
- Correlate lab results and patient history with a presumptive diagnosis.
- \bullet Assess the necessity for confirmatory testing for patient diagnosis.

1

2

CASE 1: HYPOCALCEMIA IN A **NEONATE**

PRESENTATION

25-day old male

ER with choking and rapid breathing post-feeding

History: Systolic murmur

3

• Infant was admitted

- Treated for aspiration pneumonia
 - Penicillin & gentamycin
- Echocardiogram:
 - Perimembranous ventricular septal defect (VSD) in failure

 Bilateral upper limb and left lower limb jerky movements
 Twitching of eyelids and lips
 Each episode lasted 30 sec – 1 min DAY 6

Developed seizures

neurological exan

5

WHAT DO RESULTS INDICATE AT THIS POINT?

8

10

- Hyponatremia → caused by decreased plasma volume in heart failure
 - Leads to secondary aldosteronism
- Hypoproteinemia & hypoalbuminemia >
 attributed to malnutrition, hemodilution from
 the fluid overload in heart failure, and
 increased intravascular permeability

WHAT DO RESULTS INDICATE AT THIS POINT?

- Venous blood gas:
 - Hypoxia, hypercapnia, high bicarbonate, normal pH
 - · Mixed acid-base disorder
 - Metabolic alkalosis \rightarrow due to HF
 - Underlying respiratory acidosis

WHAT DO RESULTS INDICATE AT THIS POINT?

- Normal PTH
- Increased urine calcium:creatinine ratio
- Hypophosphaturia
- Hypocalcemia

Hypoparathyroidism

Vitamin D deficient

9

7

Patient given IV calcium gluconate

Followed by oral calcium carbonate (100mg; 4x/day)

Day 7 → serum calcium: 6.53 mg/dL; serum phosphate: 12.28 mg/dL

Day 8 → Serum calcium: 8.50 mg/dL; serum phosphate: 8.71 mg/dL

Discharge: Serum calcium: 9.18 mg/dL; serum phosphate: 7.84 mg/dL

FURTHER DISCUSSION

Common causes of neonatal seizures:

- Hypoxic ischemic encephalopathy
- Intracranial hemorrhage
- Intracranial infections
- Metabolic and electrolyte disorders
- Cranial nervous system malformations
- Inborn errors of metabolism
- inborn errors of metabolish
- ns Epileptic syndromes

Hypocalcemia

11 12

DIAGNOSIS

Hypocalcemia secondary to hypoparathyroidism

Perimembraneous VSD

Possible absence of thymus

22q11 deletion syndrome

DiGeorge
Syndrome

15

- Diagnosis confirmed with FISH \rightarrow deletion in chromosome 22
- Ultrasonography → presence of thymus
- \bullet Patient did not have typical facial features of DiGeorge Syndrome

DIGEORGE SYNDROME

- Commonly associated with congenital hypoparathyroidism
- Characterized by absence or underdevelopment of thymus
 - Low T cell counts

16

- Increased susceptibility to infection
- Chromosome 22q11.2 deletions may be a random occurrence or an autosomal dominant trait
 - Confirm deletion with FISH

17 18

DIGEORGE SYNDROME

- Manifestations of 22q11.2DS vary & often involve multiple organs
 - · Congenital heart disease
 - Spinal, renal, and/or skeletal anomalies
 - Speech/language impairment
 - Thyroid and immune disorders
- \bullet Some manifestations are not obvious in neonates \Rightarrow further evaluations throughout life

PATIENT DISCHARGED

- Managed by multidisciplinary team
- Scheduled for further evaluation of kidney involvement, hearing assessment, continuation of treatment, monitoring calcium, magnesium, & phosphate
- Follow-up with pediatric endocrinologist, cardiologist, & genetics clinic

19 20

CASE 2:
PRESENTATION OF
HYPERGLYCEMIA IN AN
ELDERLY PATIENT

PRESENTATION

66-year-old female

History of hypertension, fatty liver, & prediabetes

Comes to ER with dyspnea, abdominal pain, weakness

21 22

PATIENT HISTORY:

- Diarrhea & vomiting over past few months • Increased in frequency over last 3 days
- Accompanied by worsening abdominal pain
- \bullet Polyuria and polydipsia over previous 3 weeks

Test	Result	Reference interval	Test	Result	Reference interval
Glucose (mg/dL)	>1450	70-140	Calculated osmolality	340	275-295
Sodium (mmol/L)	101	135-145	(mOsm/kg)		
	(corrected 124)		Arterial blood gas		
Potassium (mmol/L)	3.2	3.6-5.2	рН	7.36	7.35-7.45
Bicarbonate (mmol/L)	20	22-29	pCO2 (mmHg)	35.5	35-45
Calcium (mg/dL)	10.6	8.8-10.2	CBC		
BUN (mg/dL)	32.4	6.0-21.0	Hemoglobin (g/dL)	14.9	11.6-15
B-hydroxybutyrate	2.6	<0.4	Hematocrit (%)	46.2	35.5-44.9
(mmol/L)			RBC (x10 ¹² /L)	5.34	3.92-5.13
Troponin (ng/L)	32	≤10	MCV (fL)	86.5	78.2-97.9
NT-Pro BNP (pg/mL)	2857	≤193	Platelets (x109/L)	318	175-371
Creatinine (mg/dL)	1.83	0.59-1.04	WBC (x109/L)	18.3	3.4-9.6
Hemoglobin A1C (%)	13	4.2-5.6	Neutrophils (x109/L)	16.2	1.56-6.45
Lipase (U/L)	269	13-60	Lymphocytes (x109/L)	0.52	0.95-3.07

23 24

INITIAL MANAGEMENT

- 1 L bolus 0.9% sodium chloride
- 10 U subcutaneous insulin aspart
- 8 doses of 10mEq potassium chloride
- Continuous IV insulin (1.556-7.78 U/h)
- 1 L continuous PLASMA-LYTE A

Admitted to ICU

Quickly decompensated

Agitated & Disoriented

Hypotensive

Tachypneic

Required intubation & sedation

25 26

DIAGNOSIS

 Extreme hyperglycemia
 Hyperosmolar hyperglycemic state (HHS)

 Neurologic impairment

27 28

DIFFERENTIAL DIAGNOSIS HHS DKA • Dehydration • Dehydration Neurologic impairment • Neurologic impairment Increased ketones · Usually associated with · Metabolic acidosis • Usually associated with T1DM Slow progression • Rapid onset · Insulin resistance · Insulin deficiency

29 30

EPIDEMIOLOGY

- Who is most likely to develop HHS?
 - Elderly with type 2 diabetes
- Infections develop in 40-60% of cases
 - Gram-negative pneumonia
 - UTI
 - Sepsis
- Mortality rate: 10-50%

- Precipitating factors:
 - · Undiagnosed diabetes
 - Pancreatitis
 - Heart attack
 Stroke
 - Trauma
- Hospitalization for HHS account for <1% of diabetes-associated admissions

PATHOPHYSIOLOGY

Insulin resistance

Reduces glucose uptake by cells

Gluconeogenesis & glycogenolysis

31 32

33

35 36

TREATMENT FOR PATIENT

- Hemoglobin A1C → verified poor glycemic control over preceding
- Plasma glucose & dehydration worsened from consumption of glucose-rich beverages
- Elevated BUN & creatinine \rightarrow renal impairment
- Bacterial pneumonia

38

ullet Following extensive hospitalization ullet patient discharged to longterm care facility

CASE 3: AN UNUSUAL CASE OF **HYPOKALEMIA**

47-year-old male **PRESENTATION** 6-year history of hypertension Referral from detention center with weakness & hypokalemia Previous facility treated critically low potassium with IV and oral potassium

39 40

Normally developed male No remarkable history No clinical signs of malnutrition CURRENT FINDINGS: No diarrhea, vomiting, laxative abuse, intestinal obstruction or infection, or diuretic use BP was 144/81 mmHg while on antihypertensives

Sodium (mmol/L) 136-145 Potassium (mmol/L) 4.8 3.5-5.1 98-107 Chloride (mmol/L) • Normal thyroid function tests Bicarbonate (mmol/L) 22-29 • Normal serum cortisol Anion gap (mmol/L) 17 7-15 BUN (mg/dL) 6-20 Creatinine (mg/dL) 1.46 0.67-1.17 eGFR (mL/min) >60 • Abdominal CT revealed right 70-99 Glucose (mg/dL) 123 adrenal mass measuring 2.2 cm 8.5-10.6 Calcium (mg/dL) 2.7-4.5 Phosphorus (mg/dL) 3.9 Aldosterone (ng/dL) 0.0-30.0 Renin activity (ng/mL/hr) <0.2 0.5-4.0

42 41

Primary
hyperaldosteronism

• Excess production of aldosterone by adrenal gland
• Low plasma renin concentration

• Increased aldosterone due to excessive renin secretion
• High plasma renin concentration

PRIMARY HYPERALDOSTERONISM

Prevalence at 5-15%

Caused by:

Bilateral adrenal hyperplasia (~65%)

Unilateral aldosterone-producing adenoma (~30%)

Adrenal carcinoma, familial hyperaldosteronism, idiopathic hyperaldosteronism

Classic signs:

Hypertension

Hypokalemia

Metabolic alkalosis

45 46

SECONDARY HYPERALDOSTERONISM

Caused by:

Diuretics
Renovascular disease
Renin secreting tumor (rare)

Occasional observed in patients with:
Cirrhosis
Nephrotic syndrome
Heart failure

DIAGNOSIS OF PRIMARY
HYPERALDOSTERONISM

• Initial screening test:
• Aldosterone/renin ratio (ARR)
• Renin is suppressed (<1 ng/mL/hr) and aldosterone is inappropriately high (>15 ng/dL) → PA

• If screening test indicates probable PA → perform aldosterone suppression test
• Following diagnosis → perform adrenal CT → distinguishes BAH versus unilateral APA

47 48

CASE RESOLUTION

- Patient had increased aldosterone with undetectable renin activity
- · ARR was greatly increased

Primary hyperaldosteronism

- Adrenal vein sampling (AVS) demonstrated good positioning of sampling catheters in adrenal veins
 - Confirmed presence of unilateral APA

Laparoscopic right adrenalectomy perform 13 weeks after confirmation of APA

Resected gland contained bright yelloworange sold mass

Pathology confirmed cortical adenoma

49 50

PATIENT OUTCOME

- Following surgery:
- Patient became hypertensive (systolic BP at 190-200 mmHg)
- Developed ST depression \rightarrow indicates possible myocardial ischemia
- Troponin T: normal
- Treated hypertension with hydralazine
- Next day:
 - BP normal without medication
 - Normal ECG
- Patient discharged

CASE 4:
GI SYMPTOMS & SHOCK
IN PEDIATRIC PATIENT
(PARIS, FRANCE)

51

PRESENTATION

7-year-old Congolese male

ER with rash, abdominal pain, vomiting,

52

5 days of fever

No relevant family or personal history

NOTE: This took place spring 2020, during national lockdown due to pandemic

PHYSICAL EXAM Acute abdomen Cervical lymphadenopathy Peritoneal effusion, gall bladder hydrops, basal lung opacities suggestive of COVID-19 Neck stiffness

53 54

ADDITIONAL LAB TESTS

• CSF: normal findings

• COVID-19 RT PCR from NP swab: Positive

55 56

AFTER ADMISSION

- Signs of shock
- Tachycardia (heart rate 140 bpm)
- Hypotension (62/37 mmHg)
- Septic shock? Toxic shock?
 - Started on broad spectrum antibiotics
- Blood & urine cultures: No growth

Patient transferred to PICU

• ECG: indicated pericarditis and myocarditis with posterolateral hypokinesia and reduced left ventricular ejection fraction

Test		Reference interval
CK (U/L)	561	30-180
hs-Tnl (ng/L)	447	<26
BNP (ng/L)	6503	<100

- Received vasoactive and inotropic agents
- Patient put on ventilator

57 58

- Patient developed:
 - Strawberry tongue
 - Erythema
 - Cracking lips
 - Bilateral conjunctivitis
- Patient treated with IV immunoglobulins (IVIG)

Could this be Kawasaki disease?

FURTHER TESTS

- Anti-SARS-CoV-2 IgG: Positive
- Nasopharyngeal RT-PCR for SARS-CoV-2: Negative (Days 5 & 8)
- NP testing for other viruses: Negative
- Questioned mother:
 - Patient had no recent history of viral illness
 - Mom experienced symptoms consistent with COVID-19 about 40 days prior to child's fever

59 60

DIAGNOSIS:

Kawasaki Disease-like multisystem inflammatory syndrome

This is one of the earliest cases of KD-like illness related to SARS-CoV-2

61

62

64

DIAGNOSTIC CRITERIA:

Fever lasting >4 days

AND

4 out of 5 of the following signs/symptoms:

Oral changes

Cervical lymphadenopathy

Bilateral conjunctivitis without exudate

Polymorphous exanthema

Extremity changes

63

If all criteria is not met → diagnosis of "Incomplete KD"

Based on presence of clinical, laboratory, and ECG findings

DIFFERENTIAL DIAGNOSIS

- Bacterial sepsis
- Toxic shock syndrome
- Cardiogenic shock secondary to viral myocarditis
- These diagnoses ruled out following negative bacterial cultures and rapid decline in CRP and TnI following IVIG

65 66

KD SHOCK SYNDROME (KDSS)

- Uncommon, yet severe complication of Kawasaki disease
- Affects 1.5-7% patients with KD
- Higher inflammatory markers, frequent coronary abnormalities, GI symptoms, higher D-dimer
- More severe anemia, hypoalbuminemia, hyponatremia, hypokalemia

OBSERVATION DURING COVID-19 PANDEMIC:

- Cases of severe KD-like illness in children an adolescents
 - Shock
 - Myocarditis
 - History of recent SARS-CoV-2 infection
- KD-like illness related to SARS-CoV-2

This was something new!

Hyperinflammatory syndrome with multiorgan involvement

67

- \bullet "Multisystem inflammatory syndrome in children" (MISC) in U.S.
- "Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 infection" (PIMS-TS) in Europe

MIS-S & PIMS-TS

- · Patients are older
- Often from Sub-Saharan African decent
- Commonly experience
 - GI involvement
 - Shock
 - Myocarditis
 - Profound lymphopenia

This patients fits this description of this KD-like illness

69

70

68

MORE ABOUT KD-LIKE ILLNESS Hypoalbuminemia Lymphopenia

FURTHER DISCUSSION ABOUT THE PATIENT

- Troponin I and BNP elevated
 - Decreased soon after IVIG

Indicates myocarditis due to inflammation as opposed to ischemia or necrosis

• Cardiac biomarkers are relevant \Rightarrow predictors of coronary arty lesions in KD

71

FURTHER DISCUSSION ABOUT THE PATIENT

- In adults \rightarrow COVID-19 responsible for cytokine storm
- Shock likely due to elevated inflammatory markers
 - Appeared to be post-viral immunological reaction
- ullet Rapid resolution of all abnormalities following IVIG treatment ulletsupports diagnosis of KD-like multisystem acute vasculitis in this patient

PATIENT DISCHARGED

- 8-day hospitalization
- Follow-up labs one week after discharge:
 - CRP decreased (160 mg/dL \rightarrow 8.5 mg/L \rightarrow <0.5 mg/L)
 - Procalcitonin decreased (31 µg/L \rightarrow 1.0 µg/L \rightarrow 0.04 µg/L)
 - TnI decreased (447 ng/L \Rightarrow 62 ng/L \Rightarrow 19 ng/L)
- One month after discharge:
 - ECG & MRI \rightarrow normal coronary arteries and cardiac function

73 74

IN CONCLUSION...

- As laboratory professionals, we play a vital role in patient care
- We are an integral part of the health care team
- Our knowledge and expertise is priceless!
- Always keep your eye out for those interesting cases...they keep us on our toes!

REFERENCES

76

- Adilah Arifin, Subashini C Thambiah, Hafizah Abdullah, Intan Nureslyna Samsudin, A Neonate with Hypocalcemia and Cardiac Anomaly, Clinical Chemistry, Volume 67, Issue 6, June 2021, Pages 823–
- Matthew J Kolar, Hyojin Chae, Karen C McCowen, Robert L Fitzgerald, Nicholas Bevins, Weakness and Low Potassium in a 47-Year-Old Male, Clinical Chemistry, Volume 67, Issue 7, July 2021, Pages 941-
- Sarah R Delaney, Erin J Kaleta, Christine L H Snozek, Extreme Hyperglycemia in an Elderly Patient, Clinical Chemistry, Volume 67, Issue 5, May 2021, Pages 724– 728, https://doi.org/10.1093/clinchem/hyaa330
- Slimane Allali, Jérémie F Cohen, Joséphine Brice, Diala Khraiche, Julie Toubiana, Gastrointestinal Symptoms Followed by Shock in a Febrile 7-Year-Old Child during the COVID-19 Pandemic, Clinical Chemistry, Volume 67, Issue 1, January 2021, Pages 54-58, https://doi.org/10.1093/clinchem/hyaa2