

Patient is at a meeting at work where he begins experiencing severe chest pains

- Ambulance arrives in 10 minutes
- Quickly triaged
- Physician orders labs
- Phlebotomist collects blood

Diagnostic errors – an ongoing concern

- 13.8 billion lab tests reported in 2017
- Most individuals will experience at least one diagnostic error in their lifetime
- Every 9 minutes, someone in a U.S. hospital dies due to a delayed or incorrect diagnosis
- 12 million adults/year in outpatient setting will experience a diagnostic error

7

Most people will experience at least one diagnostic error in their life

8

Objectives

- 1. Review current initiatives to ensure patient safety in the clinical laboratory setting.
- 2. Discuss laboratory-related diagnostic errors.
- 3. Explain how laboratory professionals can impact patient safety.

9

"Medical Laboratory Professionals are stewards of patient safety and must promote a culture of safety and quality defined by the Institute of Medicine (IOM, now the National Academy of Medicine) as safe, effective, patient-centered, timely, efficient, and equitable practice."

Sections	Total number of tests	Number of errors (%)
Hematology	10,424	210 (2)
Cytology	602	10(1.7)
Histopathology	1202	20 (1.7)
Clinical pathology	4450	18 (0.4)
Bacteriology	1820	21 (1.2)
Serology	2480	24(1)
Mycology	62	1 (1.6)

Section	# Errors	Preanalytical Errors (%)	Analytical Errors (%)	Postanalytica Errors (%)
Hematology	210	142 (46.7)	35 (11.5)	33 (10.9)
Cytology	10	2 (0.7)	2 (0.7)	6 (2)
Histopathology	20	10 (3.3)	6 (2)	4 (1.3)
Clinical Pathology	18	12 (3.9)	2 (0.7)	4 (1.3)
Bacteriology	21	14 (4.6)	4 (1.3)	3 (1)
Serology	24	16 (5.3)	4 (1.3)	4 (1.3)
Mycology	1	0	0	1 (0.33)
Total	304	196 (64.5)	53 (17.4)	55 (18.1)

Preanalytical Error (n = 196)	n (%)
Inappropriate test request	10 (5.1)
Order entry error	24 (12.2)
Misidentification of patient	8 (4.2)
Container inappropriate	22 (11.2)
Sample collection and transport	27 (13.8)
Inadequate sample/anticoagulant volume ratio	21 (10.7)
Insufficient sample volume	18 (9.2)
Sorting and routing errors	20 (10.2)
Labeling errors	24 (12.2)
Sample misplaced	22 (11.2)

Types and percentage of different errors

Analytical Error (n = 53)	n (%)
Sample mix- ups/interference	12 (22.6)
Undetected failure in QC	25 (47.2)
Procedure not followed	10 (18.9)
Equipment malfunction	6 (3.1)

Postanalytical Error (n = 55)	n (%)
Failure in reporting	13 (23.6)
Erroneous validation of analytical data	12 (21.8)
Improper data entry	20 (36.4)
Wrong reporting	5 (9.1)
Pending reports	5 (9.1)

Root Cause Analysis of Errors

Cause of errors	n (%)
Miscommunication between nursing staff and clin	nician 18 (5.9)
Untrained nursing staff	38 (12.5)
Untrained technical staff	30 (9.9)
Failure of quality indicators	77 (25.3)
Procedure not followed	30 (9.9)
Improper handover of duty between shifts	18 (5.9)
Transcriptional error	75 (24.7)
Lack of skills and knowledge among doctors	18 (5.9)
particularly in cytology, histopathology, and	
bacteriology	

Laboratory professionals are in a position to see the total testing process in its entirety. We recognize potential errors and vulnerabilities within the process.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header>

39

RCA: Use the "WHY" technique		
Event: The turn-around-time for a test was too long.		
1. WHY was the TAT too long?	The controls were expired, and testing had to be delayed	
2. WHY were there no non-expired controls?	The order did not get shipped in time	
3. WHY didn't the order get shipped in time?	The order was not placed on time	
4. WHY was the order not placed on time?	The person who normally does the ordering was out sick and there was no one designated as the backup	

Event Management Systems Lab needs a "reporting culture" Captures laboratory errors, errors outside of the lab, and near misses Near misses provide excellent quality improvement opportunity

References

- www.ascls.org
 Badrick T. (2013) Evidence-Based Laboratory Medicine. Clin Biochem Rev. 2013 Aug; 34(2): 43–46 Committee on Quality of Health Care in America. Institute of Medicine. Kohn L, Corriga J, Donaldson M, eds. To err is human: building a safer health system. Washington DC: National Academy Press; 2000.
- Academy Press, 2000. Lippis G, Plesani M. A Six-Sigma approach for comparing diagnostic errors in healthcare-where does laboratory medicine stand? Ann Transi Med. 2018 May,6(10):180. doi: 10.2103/3rtm.2018.04.02. Mario Plebani, MD, Michael Laposta, MD, PhD, George D. Lundberg, MD, The Brain-to-Brain Loop Concept for Laboratory Testing 40 Years After Its Introduction, *American Journal of Clinical Psychology*, Volume 116, Issue 6, December 2011, Pages 829– 63, https://doi.org/10.1303/AIATP/36WH33MOND
- Plebani, M., Aita, A., & Sciacovelli, L. (2021). Patient Safety in Laboratory Medicine. In Textbook of Patient Safety and Clinical Risk Management (pp. 325-338). Springer, Cham. Roy, A. D., & Das, D. (2019). An evaluation of the errors occurring in pathology and microbiology laboratories of a tertiary care teaching hospital and their root cause analyses. *Journal of Health Research and Reviews*, 6(3), 102.