

All because of a delayed flight...

<u>EBV really loves</u> <u>B-lymphocytes</u>

- EBV enters B-cells by binding to CD21
- B-cells proliferate and differentiate
- Memory B-cell pools migrate to other lymphoid tissues

Pharyngeal tonsil adenoid Palatine tonsil Palatine tonsil Lingual tonsil

Important Lab features of acute infectious mono

- Absolute lymphocytosis
- 20% or more atypical lymphocytes (RR 0-5%)
- Heterophile antibody
- Anti-VCA IgM • Anti-EA

25

27

26

Limitations of Monospot •Screening test only •10% of adults will test negative •50% of children will test negative (≤ 4 years old) •Not as sensitive as EBV-specific antibody testing •False positives can occur due to lymphoma, viral hepatitis, malaria, autoimmune disease

EBV Serology Heterophile Ab Viral Capsid Ag Early Ag EBNA <u>Condition</u> IgM IgG IgA <u>Anti-EA</u> Anti-EBNA <u>lgM</u> Uninfected Acute IM ++ +/-+/-+/-Past infection IM + Post-transplant dz ++ +/-+ +/-Burkitt's +++ +/-+ NP carcinoma +++ + ++ +

Will there ever be a vaccine?

- Many ongoing clinical trials
- EBV envelope protein (gp350)

- mRNA vaccines Moderna
- Viral vectors adenovirus, vaccinia
- T-cell immunotherapies: adoptive T-cells, EBV-specific T-cell receptors, CAR T-cell therapy

43

44

References Bjornevik, K., Cortese, M., Healy, B. C., Kuhle, J., Mina, M. J., Leng, Y., Elledge, S. J., Niebuhr, D. W., Scher, A. I., Munger, K. L., & Ascherio, A. (2022). Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. *Science*, 375(6578), 296-301. https://doi.org/10.1126/science.abj8222 Cui X and Snapper CM. (2021). Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. *Frontiers in Immunol*. 12:734471. doi: 10.3389/fimmu.2021.734471

Harley, J.B., Chen, X., Pujato, M..., Weirauch, M. (2018). Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. *Nat Genet*, 50(5), 699-707. https://doi.org/10.1038/s41588-018-0102-3

