Thalassemia

KRYSTAL PEARCE, MHS, MLS(ASCP)^{CM}

ASSISTANT PROFESSOR MEDICAL LABORATORY SCIENCE PROGRAM SCHOOL OF ALLIED HEALTH PROFESSIONS LSU HEALTH SHREVEPORT

Objectives:

Define Thalassemia

- Compare and Contrast different types of thalassemia
- Describe typical laboratory findings associated with thalassemia

Red Blood Cells and Hemoglobin

TABLE 6.2 Comparative Chain Composition of Hemoglobin Types						
Hemoglobin Type	Symbol	Polypeptide (Globin) Chains				
Embryonic						
Gower-1	$\zeta_2 \varepsilon_2$	2 zeta 2 epsilon				
Gower-2	$\alpha_2 \varepsilon_2$	2 alpha 2 epsilon				
Portland-1	ζ2 γ2	2 zeta 2 gamma				
Hemoglobin F	$\alpha_2 \gamma_2$	2 alpha 2 gamma				
Hemoglobin A	$\alpha_2 \beta_2$	2 alpha 2 beta				
Hemoglobin A ₂	$\alpha_2 \delta_2$	2 alpha 2 delta				

Composition of hemoglobin types

Hemoglobin Composition and Configuration

- ► Hemoglobin F
 - 2 Alpha chains
 - 2 gamma chains

Hemoglobin Composition and Configuration

- Normal Adult Hemoglobin (Hemoglobin A) consist of four heme groups and four polypeptide chains.
- The polypeptide chains
 - 2 Alpha chains
 - 2 Beta chains

Hemoglobin Composition and Configuration

► Hemoglobin A₂

- 2 Alpha Chains
- 2 Delta Chains

▶ 2.5%

Hemoglobinopathies

Qualitative vs. Quantitative Disorders

Qualitative Hemoglobinopathies

- Qualitatively abnormal hemoglobin molecules are the result of genetic mutations in which amino acid substitutions or deletions result in structural variants of the Hgb molecule
 - Hgb S (most common)
 - Hgb C

Quantitative Hemoglobinopathies

- Quantitative globulin disorders are the result of various genetic defects that cause decreased synthesis of normal globin chains.
 They are known as Thalassemias
 - Alpha Thalassemia
 - Beta Thalassemia

Thalassemia

Are a group of inherited disorders of hemoglobin synthesis

- Decreased rate of synthesis of one or more polypeptide chains (quantitative)
- Classified according to the polypeptide chain or chains involved

Thalassemia Inheritance and pathophysiology

Genetics

- Structural gene deletion (partial or total)
- Pathophysiology
 - Characterized by absence or decrease in synthesis of one of the two constituent globulin subunits of a normal hemoglobin molecule

Major vs Minor

- In general, heterozygous inheritance of a thalassemia gene produces thalassemia minor (no clinical symptoms) while homozygous or doubly heterozygous thalassemia produces thalassemia major (more clinically severe)
- Combination hemoglobinopathies result from a combination of a globulin defect and another type of hemoglobinopathy

Beta-Thalassemia

- One of most common single-gene disorders
- Point mutations (more than 200)
- Decreased production of Beta globulin

The highest prevalence
of beta-thalassemia
mutations is in people
of Mediterranean,
Middle Eastern, and
Asian descent

Variants of Beta-thalassemia

Beta-thalassemia minor

- Beta-thalassemia intermedia
- Beta-Thalassemia Major (Cooley's Anemia)

Laboratory Findings

- Hematological findings
 - Decreased Hemoglobin and Hematocrit
 - Decreased RBC count
 - ▶ RBC indices
 - MCV
 - MCH
 - ► MCHC
 - RDW

Peripheral Smear

- Micro/hypo
- Anisocytosis
- Pokilocytosis
- Target
- Polychromasia
- NRBC's

Other Lab Findings

- Bilirubin
- Serum iron
- TIBC
- Ferritin

Electrophoresis

- Typically with Beta-Thalassemia
 - Decreased A
 - Increased F
 - Elevated A_2

Association of Beta-Thalassemia with hemoglobinopathies

Hgb S-Sickle Cell Thalassemia

Hgb C-Thalassemia

HgbE-Thalassemia

Treatment

Transformed from a lethal disease of infancy into a chronic disease of adulthood with a dramatic increase in both survival and life expectancy.

Blood transfusions

Iron chelation

Bone Marrow Transplant

Gene Therapy

Alpha Thalassemia

Major cause is deletions that remove one or both alpha globulin genes from the affected chromosome.

Found primarily in individuals of Mediterranean, Asia and African ancestry

California

Types of Alpha-Thalassemia

- Silent Carrier (one inactive gene)
- Alpha-Thalassemia Trait (2 inactive genes)
- Hb H Disease (Three inactive genes)
- Hydrops fetalis with Hb Bart (4 inactive genes)

Silent Carrier State

- Missing only 1 of 4 genes
- ▶ 3 remaining genes compensate
- No clinical manifestations of hemoglobinopathy

Alpha Thalassemia Trait

2 Missing alpha genes

Imbalance of alpha and beta chain synthesis creates an imbalance

Hemoglobin H Disease

- ► 3 gene deletion
- Hgb H is a tetramer of four normal beta chains
- Prevalent in Southeast Asia, Mid. East, Greece and Cypress
- Micro/hypo, target cells, and tiny misshaped red cells
- Incubate cells with brilliant cresyl blue to demonstrate inclusions
- ► Hgb H characteristics

Hemoglobin Bart's

- > An abnormal hemoglobin which is composed of four gamma chains
- Formed in alpha thalassemia minor
- Occurring in anemic, stillborn infants
- Hgb Bart's essentially useless as an oxygen-transport protein
- hydrops fetalis

Lab Results

Peripheral Smear

Micro/Hypo

Anisocytosis

Poikilocytosis

RBC Indices

Hemoglobin H

Electrophoresis

Electrophoresis Patterns in Hemoglobinopathies							
	Ηb Α (α2β2) (%)	HbA2 (α2δ2) (%)	ΗbF (α2γ2) (%)	НЬН (β4) (%)	Hb Barts (γ4) (%)		
Normal	>95	2-3	<1	0	0		
Alpha Thal (0)	0	0	0	<10	>90		
Alpha Thal Major	60-90	2–3	0	5-30	2-5		
Alpha Thal Trait	95	3-4	<1	0	0		
Beta Thal Major	0-5	0–5	>90	0	0		
Beta Thal Intermedia	5-90	0-5	10-90*	0	0		
Beta Thal Minor	90–95	3-10	2–3	0	0		

Alpha chain variants

► Hgb H Constant Springs

Newborn screenings

Treatment

References

- McKenzie, S. B., Williams, J. L., & Landis-Piwowar, K. (2020). Clinical laboratory hematology.
- Turgeon, Mary Louise. Clinical Hematology: Theory and Procedures. 6th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2018.

www.statpearls.com

- http://www.medical-labs.net/hemoglobin-electrophoresis-949/
- https://www.brown.edu/academics/biomed/departments/pathology/resi dency/digital-pathology-library/hematopoietic-and-lymphoid/blood-cellanomalies/alpha-thalassemia
- https://doctorlib.info/oncology/pocket-oncology/132.html