# Heparin Induced Thrombocytopenia

Angela Foley, MS, MLS(ASCP)SH
Associate Professor
LSUHSC School of Allied Health Professions
New Orleans, LA

# **Objectives**

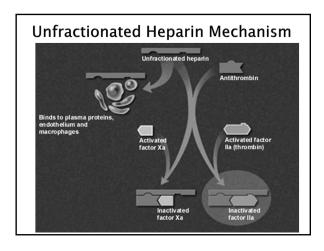
- Differentiate immune vs nonimmune HIT
- ▶ Contrast UFH vs LMWH
- Identify laboratory tests used to detect HIT
- Discuss alternative anticoagulant treatment options for patients with HIT

#### Heparin

- Therapeutic anticoagulant for treatment and prevention of thrombosis
- Extracted from porcine intestinal mucosa or beef lung



#### Types of Heparin

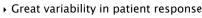

- Unfractionated Heparin (UH or UFH)
  - Isolated from liver in1916 by Jay McLean and William Howell (Johns Hopkins University)
  - Available for medical use since 1937
- ▶ Low Molecular Weight Heparin (LMWH)
- Derived from UFH
- Available for medical use since 1993

## **Unfractionated Heparin (UFH)**

- Heterogeneous mixture of sulfated mucopolysaccharides
  - 5,000 40,000 Daltons
- ▶ Binds to Antithrombin (AT)
  - via unique pentasaccharide sequence
  - enhances ability of AT to inactivate Xa, Ila (thrombin), and other serine proteases
- Administered IV
  - CABG surgery, angioplasty, stent placement, orthopedic surgery



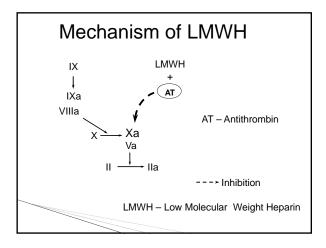
# Mechanism of Unfractionated Heparin UFH IXA VIIIA VIIIA Prothrombin II Activation III AT - Antithrombin

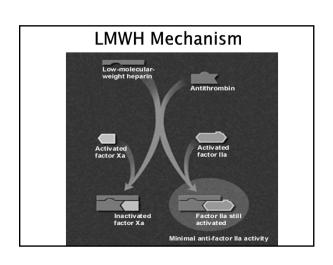



# **UFH**

- Anticoagulant of choice for pregnant women (does not cross placenta)
- Can be monitored by daily with APTT (1.5-2.5 times normal)
- · Inexpensive and readily available
- Can also monitor using anti-Xa assay and Activated Clotting Time (surgical arena)
- Can be neutralized easily by protamine sulfate
- Relatively inexpensive




## Disadvantages of UH




- Inhibited by PF4
- Short half-life
- Can bind to other plasma proteins and endothelium
- · Adds to short plasma half-life problem
- Difficult to monitor accurately with APTT
- ▶ Can be associated with
  - Osteoporosis with long-term use
  - Heparin-Induced Thrombocytopenia (HIT)

# Low Molecular Weight Heparin (LMWH)

- Derived commercially by chemical or enzymatic fractionation of UFH
- Smaller molecule than UFH
  - Short chains of mucopolysaccharides
  - < 8000 Daltons</p>
- ▶ Brands available in US
  - ∘ Lovenox® (Enoxaparin) 1998
  - Fragmin\* (Dalteparin) 1999
- ∘Innohep® (Tinzaparin) 2000





## **LMWH**

- Administered SubQ
- Preferentially enhances inhibition of Xa and to a lesser extent thrombin (IIa)
- Safer to use in settings when less anticoagulant effect is needed
  - VTE prevention
  - Treatment of DVT and PE
- Usually does not require monitoring

#### LMWH

- Fewer side effects
  - Reduced interference with platelet function and vascular permeability
  - Less non-specific binding to proteins and cell surfaces
- Easier to calculate dosage established by weight-based nomograms
- More predictable response
- ▶ Longer plasma half-life
- Resists inhibition by PF4
- → Frequency of HIT is < 1%

#### Disadvantages of LMWH

- Higher doses, long term use or use during pregnancy may require some monitoring
- Must use chromogenic anti-Xa assay to measure/monitor
- Much more expensive than APTT
- · Not available in all labs
- Mainly eliminated by kidneys
  - Problem for patients with end-stage renal disease

# HIT

- Complication of heparin therapy (Usually UFH)
- ▶Two types
  - ∘Type 1
- ∘Type 2

# Type 1

- → Non-immune
- Presents within first 2 days after heparin exposure
- Platelet count will normalize with continued heparin therapy
- Results from direct effect of heparin on platelet activation

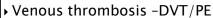
# Type 2

- Immune mediated
- Typical presentation
  - ∘ 4 10 days after heparin exposure
- Rapid onset presentation
  - Fall in platelet count in first 24 hours
- Not a new immune response
- Patient already has circulating HIT antibodies associated with recent heparin exposure (past 100 days)

#### Type 2 (cont.)

- Delayed-onset HIT presentation
  - Thrombocytopenia is delayed for up to 3 weeks post heparin
- ▶ Has life and limb threatening thrombotic complications
- Term HIT generally refers to Type 2

# Signs of HIT


- Decrease in platelet count
  - Fall in count >50% of baseline count even if count remains above 150,000/uL
- Necrotic skin lesions at heparin



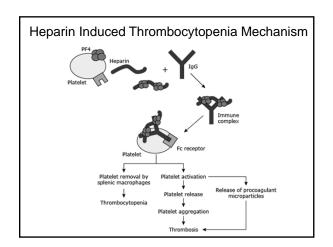


- Acute systemic reactions
- Chills, fever, dyspnea, chest pain

#### Signs of HIT (cont.)



- Venous limb gangrene
- DVT patients with HIT who are started on warfarin
  - · Can lead to severe Protein C depletion with likely loss of limb
    - · Activated Protein C with cofactor Protein S are Vitamin K dependent **inhibitors** of clotting




#### Consequenses of Type 2 HIT

- Venous thromboembolism
  - Deep Vein Thrombosis (DVT)
  - Pulmonary Embolism (PE)
- Arterial thrombosis less common
  - Myocardial Infarction (MI)
- NOTE:
- Disorder is sometimes referred to as HITT
- · Heparin Induced Thrombocytopenia Thrombosis

# Pathophysiology of HIT

- Platelet Factor 4(PF4)
  - Released from plt  $\alpha$ -granules during activation
  - Binds to heparin and forms complex
  - · Can neutralize heparin-like molecules on endothelial
- ▶ IgG antibodies form to PF4-Heparin complexes Seen in 90% of patients with clinical HIT diagnosis
  - Antibodies bind to PF4-Heparin complex on platelet
  - surface and activate platelets
- Can also be found in patients exposed to heparin but without clinical manifestations of HIT
- Much more likely to occur with UFH than LMWH



# HIT in absence of heparin

- HIT antibodies recognize PF4 on platelet chondroitin sulfate
  - · Activate platelets even when no heparin is present
- ▶ Explains
  - Delayed-onset HIT
    - · Thrombosis and thrombocytopenia without proximate heparin exposure
  - Spontaneous HIT syndrome
  - Persistant HIT

#### **Epidemiology**

- About 12 million people in US have some heparin exposure yearly (1/3 of all hospitalized patients)
- Frequency of HIT
  - 1 5% in patients on IV UFH\*
- <0.1% in patients receiving subQ UFH
- Overall risk
  - ~0.2% of hospitalized heparin-exposed patients

\*More common in surgical patients receiving prolonged post op thromboprophylaxis (e.g. for 10- 14 days post orthopedic or CABG/valve replacement surgery)

#### Mortality/Morbidity in HIT Patients

- ▶ Thrombotic complications in ~30%
- → Overall mortality ~20%
  - Recent improvements in early diagnosis - better prognosis
- →~10% require amputations or suffer other major morbidity

#### Race/Sex/Age

- Nonwhites
  - 2 3 times more likely to progress to HIT-associated thrombotic outcome
- · Less risk than women
- · Difference in risk is most striking in UFH treated women vs men
- No relationship between sex and risk for HIT in patients treated with LMWH
   Better to use LMWH for surgical thromboprophylaxis in women?
- Retrospective study of 408 patients with HIT
- 66% were >60

#### Summary of increased risk for HIT

- **▶ UFH vs LMWH**
- IV vs SubQ heparin
- Longer duration of heparin use
- Surgical (esp cardiac, ortho) vs medical patient
- Female
- Over 60

## Diagnosing HIT

- ▶ 4T's score
  - Thrombocytopenia
  - Timing of thrombocytopenia relative to heparin exposure
  - Thrombosis or other sequelae of HIT
  - Likelihood of oTher causes of thrombocytopenia

#### 4 T's Score Feature 2 points 1 point 0 points >50% drop **AND** 30%-50% drop >30% drop **OR** Thrombocytonenia nadir >20,000 OR nadir 10-19,000 nadir <10,000 5-10 days OR fall 5 -10 days fall but not clear; **OR** <1 day fall if Platelet count fall in Timing of platelet exposure in past 30 days eparin exposure 30-100 days ago recent heparin New thrombosis **OR** Progressive **OR** recurrent Thrombosis or skin necrosis; acute None other sequelae systemic reaction after IV UHF bolus erythematous skin lesion

Possible

Definite

#### Total scores and HIT probability

- → 0 3; Low probability
- Negative predictive value 0.998
- Might exclude HIT without further lab testing and heparin can be continued
- ▶ 4 5; Intermediate probability
- ∘ ~10-14% chance of HIT
- ▶6 8; High probability
- ∘ ~35% chance of HIT

# Overdiagnosis of HIT?

None apparent

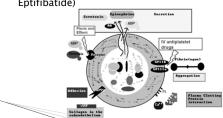
- Retrospective study of surgical intensive care unit patients
  - 8.6% of patients with low-probability 4T scores (0-3) were positive for HIT with lab testing
  - 57% of patients with high-probability 4T scores (6-8) were HIT negative
- Conclusion

count fall

oTher causes of

· Testing or treatment for HIT should NOT depend on 4Ts score alone

#### HIT Expert Probability score (HEP)


- More detailed
- Improved diagnostic utility of 4T score
- ▶ Shown to be100% sensitive and 60% specific for HIT
- Better correlation with serologic HIT testing

## **Complicating Conditions**

- → Septicemia with DIC
- **▶ITP**
- **▶**TTP
- **HUS**
- Liver disease with hypersplenism
- Transfusion reactions

# Medications known to cause decreased plts

- ▶ GP IIb/IIIa inhibitors
  - · IV plt aggregation inhibitors (Abciximab, Eptifibatide)



# Medications known to cause decreased plts (cont.)

- Quinine and other antimalarial drugs
- Rifampicin, sulfur drugs and other antibiotics
- Gold salts and other heavy metals
- Sedatives and anticonvulsants
- Salicylates and other analgesics

#### Characteristic Features

- → Timing of onset
  - Decrease in plt count begins 5 14 days post start of heparin treatment
- Severity of thrombocytopenia
- · Usually mild to moderate
- ∘ Plt count rarely <15,000/uL
- Large-vessel venous or arterial thrombosis
  - Thrombosis may precede thrombocytopenia in up to 25% of patients with HIT

#### **Heparin Treatment Monitoring**

- Baseline platelet count
- Follow-up counts based on patient risk for HIT
  - Risk > 1% (UFH post cardiac or ortho surgery)
  - Plt count every 2 3 days from day 4 14 or until heparin is stopped
  - Risk <1% (LMWH)
  - ACCP suggests no plt count monitoring needed
- If count falls by >50% and/or thrombotic event occurs
  - · Perform diagnostic tests for HIT

#### **Diagnostic Tests**

- Non-functional Immunoassays
  - ELISA
- ▶ Functional assays
  - Seratonin Release Assay (SRA)
  - Heparin-Induced Platelet Aggregation assay (HIPA)
- Imaging studies

#### NOTE

- Really NO Gold Standard laboratory test for diagnostic confirmation HIT
- HIT requires a *clinical* diagnosis

# **Immunoassays**

- **▶ ELISA** 
  - Widely available
  - Rapid turn around time
  - High sensitivity (99%)
  - $^{\circ}$  Poor specificity (30 70%)

#### **ELISA Procedure**

- PF4 and heparin are coated to surfaces of microplate wells
- > Patient serum or plasma is added to wells
- Antibody (if present) adhers to PF4-Heparin complex
- Plate wells are washed
- Enzyme-labeled monoclonal antibodies to human IgG (and IgM) are added and incubated
- Plate is washed
- > Chromogenic substrate is added
- Color development in well is positive test for heparin induced antibodies

#### ELISA (cont.)

- Non functional assay
- · Can detect antibodies that are not pathologic
- · Biologic false positive
- Kits which detect ONLY IgG antibodies have better correlation with Seratonin Release Assays (SRA)
- Less labor intensive than SRA
- Does not require blood from healthy drugfree donors
- Can be performed in most labs

#### **Functional Assays**

- ▶ Seratonin Release Assay (SRA)
  - HIT antibodies cause platelets to aggregate and release serotonin
  - Most sensitive
  - Availability largely restricted to HIT focused research centers

#### ▶ HIPA

- · Heparin-Induced Platelet Aggregation assay
- · Highly specific but less sensitive than SRA

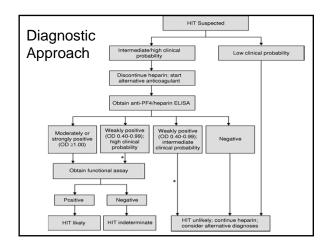
#### **SRA**

- Normal donor platelets are radiolabeled with \*14-C serotonin and then washed
- Washed \*14-C seratonin plts + patient serum + low (therapeutic) and high heparin concentrations
- Positive test
  - $^{\circ}$  >20% serotonin release at low heparin dose (0.1 U/mL heparin)
- Considered gold standard assay
- Sensitivity 69% to 94%
- Specificity as high as 100%
- Technically demanding, costly, uses radioisotopes

#### **HIPA**

- Patient serum is mixed with donor platelets in presence of heparin
- Donor plt aggregation indicates presence of antibodies to heparin-PF4 complex
- ▶ Sensitivity varies from 30% to 81%
- Specificity varies from 82% to 100%
- One study of 146 patients
  - $^{\circ}$  More sensitive than ELISA for lab confirmation of  $\mbox{\sc HIT}$
- Neither HIPA nor ELISA predicted thrombotic risk

## **Imaging Studies**


- DVT can be silent
- Ultrasonography even in absence of clinical evidence may be considered







Pulmonary embolus (PE) located in the proximal pulmonary artery (PA) as seen on spiral CT.



# Alternative Parenteral Anticoagulants (IV or injection)

- Direct Thrombin Inhibitors
  - · Argatroban (Acova®)
    - FDA approved for prophylaxis and treatment of thrombosis in HIT patients
  - · Good for dialysis patients
  - · Bivalirudin (Angiomax®)
  - FDA approved for patients undergoing PCI or cardiac cath who have or who are at risk for HIT
  - Lepirudin (Refludan®)
  - · No longer available

# Alternative Parenteral Anticoagulants (cont.)

- → Xa Inhibitors
  - Fondaparinux (Atrixa®)
    - not FDA approved for use in HIT but considered to be important treatment option especially for pregnant women (doesn't cross placenta)
    - · Off-label use
  - Danaparoid (Orgaran®)
  - · not available in US

#### Alternative Oral Anticoagulants

- Warfarin (Coumadin)
  - Monitored with PT/INR
  - Don't start with HIT patients until platelet count >150,000/uL
- Direct Oral Anticoagulants (DOACs)
  - Direct Thrombin Inhibitor
  - · Dabigatran (Pradaxa®)
- Xa Inhibitors
  - · RivaroXaban (XareIto®)
- · ApiXaban (Eliquis®)
- · EdoXaban (Savaysa®)

Note: DOACs not fully assessed for HIT treatment None have FDA approval for use in HIT Can't be used for patients with kidney failure

# Managing patient with history of HIT

- Treatment/prevention of VTE or management of Acute Coronary Syndrome
  - Use alternative anticoagulants in patients with persistent HIT antibodies
- However, UFH is clear anticoagulant of choice for 3 patient populations
  - Cardiac surgery
  - Vascular surgery
  - Hemodialysis

#### Long-term Monitoring

- HIT patients with isolated thrombocytopenia
  - Give alternative anticoagulants until platelet count recovers to stable plateau
  - Continue for up to 4 weeks with the alternative agent or warfarin
- HIT patients with thrombosis
  - Give alternative anticoagulant followed by transition to warfarin only after plt counts have recovered to >150,000/uL
  - Overlap with DTI until INR is therapeutic for at least 48 hrs
  - Continue for 3 months

#### Long-term Monitoring (cont.)

- HIT patients who no longer have thrombocytopenia but need cardiac intervention
  - Heparin can be used short term for cardiac surgery
  - Bivalirudin or argatroban for cardiac cath or PCI(angioplasty with stent)
- HIT patients with persistant antibodies who need cardiac surgery
  - Should NOT receive heparin

# Consequenses of missed diagnosis or misdiagnosis?

- ▶ Missed diagnosis
  - Increases risk of thrombosis, amputation or death
- Misdiagnosis can result in
  - Major hemorrhage
  - Thrombocytopenic patients treated with alternative anticoagulants
  - $\circ$  Thrombosis
  - Heparin treatment suspended unnecessarily

#### Case Study 1

- ▶ 55 year old female
- Admitted to hospital for coronary artery bypass surgery
- Had mild myocardial infarction 3 years previously and was treated with heparin therapy for 5 days without complications

#### Pre-op Lab Results

WBC 8200/μL

RBC 4.8 x 10<sup>6</sup>/μL

Hgb 13.5 g/dL

Hct 41%

Plt 265x10<sup>3</sup>/μL

PT 11.5 sec

APTT 36 sec

## Case Study 1

- Patient underwent bypass surgery with associated heparin therapy
- 2 days post surgery patient complained of left leg pain and chest discomfort
- ▶ Thrombotic evaluation revealed DVT
- Ventilation-perfusion scan indicated a perfusion defect in right lung suggesting possible PE

#### 4 T's Score

| Feature                            | 2 points                                                                                | 1 point                                                                                    | 0 points                                                                |
|------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Thrombocytopenia??                 | >50% drop AND<br>nadir >20,000                                                          | 30%-50% drop<br>OR nadir 10-19,000                                                         | >30% drop OR<br>nadir < 10,000                                          |
| Timing of platelet count fall      | 5-10 days OR fall<br>≤1 day if heparin<br>exposure in past<br>30 days                   | 5 –10 days fall but not<br>clear; OR ≤1 day fall if<br>heparin exposure 30–100<br>days ago | Platelet count fall in<br><4 days without<br>recent heparin<br>exposure |
| Thrombosis or other sequelae       | New thrombosis<br>OR skin necrosis;<br>acute systemic<br>reaction after IV<br>UHF bolus | Progressive OR recurrent<br>thrombosis;<br>erythematous skin lesions                       | None                                                                    |
| OTher causes of thrombocytopenia?? | None apparent                                                                           | Possible                                                                                   | Definite                                                                |

#### Case Study 1

- Heparin was continued
- ▶ 7 days post-op
  - Left lower leg became blue and swollen
  - $\circ$  Platelet count dropped to 50  $\times 10^3/\mu L$
  - Diagnosis?



#### Case Study 1 (cont)

- Left leg was determined to be nonviable and was amputated below the knee
- Maintenance therapy with warfarin was started
- Patient was discharged

#### What Should Have Happened?

- Platelet count should have been more carefully monitored
- Heparin probably should have been discontinued immediately when DVT was diagnosed
- Alternative anticoagulation started
- Bilvalirudin or Argatraban

#### Case 2 - 2005

- > 75 year old Hawaiian-Chinese female
- History of aortic stenosis, renal disease and hypertension
- Presented with pitting edema of lower legs
- Cardiac cath procedure
  - Showed severe aortic stenosis, aortic and mitral regurgitatio
  - Received flushes of 250 units UFH in venous and arterial sheaths
- Underwent cardiac surgery 10 days later
  - Aortic valve replacement
  - Intraaortic balloon pump (IABP)
  - Received 32,000 units UFH

J Med Case Reports, 2007; 1: 13.
Severe heparin-induced thrombocytopenia: when the obvious is not obvious, a case repo

#### Case 2 (cont.)

- ▶ Pre-op platelet count 108,000/uL
- Platelet count dropped to 25,000/uL by 3<sup>rd</sup> day post op
- Attributed to IABP\*
- IABP was removed
- Thrombocytopenia continued
  - Refractory to plt transfusions over several days
- Renal function deteriorated
  - CVVHD\*\*
  - · Heparin-flushed dialysis catheter was placed
    - · additional heparin exposure in tubing
      - \*Intra-Aortic Balloon Pump
      - \*\*Continuous VenoVenous HemoDialysis

#### 4 T's Score

| Feature                             | 2 points                                                                             | 1 point                                                                                    | 0 points                                                                |
|-------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Thrombocytopenia                    | >50% drop AND<br>nadir >20,000                                                       | 30%-50% drop<br>OR nadir 10-19,000                                                         | >30% drop OR<br>nadir < 10,000                                          |
| Timing of platelet count fall       | 5-10 days OR fall<br>≤1 day if heparin<br>exposure in past 30<br>days                | 5 –10 days fall but not<br>clear; OR ≤1 day fall if<br>heparin exposure 30–100<br>days ago | Platelet count fall in<br><4 days without<br>recent heparin<br>exposure |
| Thrombosis or other sequelae        | New thrombosis OR<br>skin necrosis; acute<br>systemic reaction<br>after IV UHF bolus | Progressive OR recurrent<br>thrombosis;<br>erythematous skin lesions                       | None                                                                    |
| OTher causes of<br>thrombocytopenia | None apparent                                                                        | Possible                                                                                   | Definite                                                                |

#### Case 2 (cont.)

- 7 days post-op
   PIt count 43,000/uL despite 48 units of plts
   Differential diagnosis
   Sepsis related DIC
   Accelerated plt removal 2° to CVVHD

- Right hand cyanosis developed
- Attributed to right radial arterial catheter
  - Removed
- All toes and fingers showed severe ischemic changes
- ➤ 2 days later

   Plt count dropped to 8,000/uL

Gangrenous right hand and left foot as they appeared on hospital day #15.



#### 4 T's Score

| Feature                             | 2 points                                                                             | 1 point                                                                                    | 0 points                                                                |
|-------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Thrombocytopenia                    | >50% drop AND<br>nadir >20,000                                                       | 30%-50% drop<br>OR nadir 10-19,000                                                         | >30% drop OR<br>nadir < 10,000                                          |
| Timing of platelet count fall       | 5-10 days OR fall <1 day if heparin exposure in past 30 days                         | 5 –10 days fall but not<br>clear; OR ≤1 day fall if<br>heparin exposure 30–100<br>days ago | Platelet count fall in<br><4 days without<br>recent heparin<br>exposure |
| Thrombosis or other sequelae        | New thrombosis OR<br>skin necrosis; acute<br>systemic reaction<br>after IV UHF bolus | Progressive OR recurrent<br>thrombosis;<br>erythematous skin lesions                       | None                                                                    |
| OTher causes of<br>thrombocytopenia | None apparent                                                                        | Possible                                                                                   | Definite                                                                |

#### Case 2 (cont.)

#### **▶ FINALLY**

- · Critical care specialist joined team
- · Ordered heparin-PF4 ELISA test
- Strongly POSITIVE
- Patient started on argatroban
- 6 days post argatroban
- Platelet count was >100,000/uL
- $\circ$  Started on warfarin with goal of INR of 2 3
- · Argatroban discontinued after 5 day overlap

#### Case 2 (cont.)

- ▶ 27 days in intensive care
- No additional thromboses
- ▶ Required bilateral mid-foot amputations and amputations of all fingers of right hand

#### Case 2 (cont.)

- ▶ Reasons for misdiagnosis
  - 1. Plausable alternative explanations for thrombocytopenia
    - · Presence of the IABP
    - Presence of sepsis, CVVHD\*
  - 2. Rapid-onset presentation
    - Usually platelet count drop happens 5 10 days after heparin initiation
    - Drop occurred on day 3 of heparin reexposure

#### Case 2 (cont.)

- Should have
- Immediately ceased all heparin including flushes and LMWH
- Started argatraban
  - lepirudin (available in 2005) was contraindicated due to acute renal failure

#### Case Study 3 - Patient with remote history

- of HIT requiring urgent cardiac surgery
- 51 year old male with history of Hereditary Erythroblastic Multinuclearity associated with a Positive Acidified Serum Test (HEMPAS)
- Developed severe HIT (heparin reexposure)
   Strongly positive for HIT antibodies
- Treated successfully with danaparoid
- 3 years later
  - Developed acute pulmonary edema 2º to flail mitral valve
  - · Required urgent cardiac surgery
  - No time to perform repeat HIT antibody testing prior to surgery

#### What treatment was recommended?

- HIT antibodies are remarkably transient
- Non-detectable 40 100 days post HIT episode (SRA vs ELISA-IgG)
- Probability of HIT antibodies being present after 3 years negligible
- Recommendation
  - Usual introperative anticoagulation with UFH
  - Post-op anticoagulation with danaparoid (Orgaran)
  - · Xa inhibitor
  - · Not FDA approved in US
  - · This patient was treated in Canada

#### Case 4

- → 70 year old woman
- 4 days post discharge following laparotomy for perforated duodenal ulcer with peritonitis
- Complaints of right-sided pleuritic chest pain
  - Started day after discharge
  - Associated with productive cough of whitish sputum
- Chills but no fever
- ▶ SOB

# Case 4(cont.)

- Physical exam revealed obese woman in mild distress
- Lung fields had decreased air entry bilaterally, right side>left
- Metabolic panel essentially normal
- ▶ CBC
- WBC 16,000/uL with 83% neutrophils
- ∘ Hgb 10 g/dL
- ∘ Hct 29.5%
- Plt ct 170,000/uL
- → Ct scan pleural effusion
- → Chest X-ray pneumonia in right lung

#### Case 4(cont.)

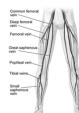
- Diagnosed with hospital acquired pneumonia
- > Treated with IV fluids and antibiotics
- Day 2
  - Improved symptoms

  - WBC 8,000/uL
  - · Hgb 8.6g/dL
  - Hct 26%
  - Plt ct 118,000/uL
  - · CT scan improving pleural effusion
  - In evening patient complained of left knee pain

#### Case 4(cont.)

- PE revealed erythema around left knee
- ▶ Patient denied trauma
  - · Stated flow-tron was a little tight
  - Flow-tron was loosened
- Tylenol given for pain
- One hour later
  - · Entire left leg noted to be swollen and tender
- Diagnosed with DVT
- · Started on heparin infusion

#### 4 T's Score


| Feature                             | 2 points                                                                             | 1 point                                                                                    | 0 points                                                                |
|-------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Thrombocytopenia                    | >50% drop AND<br>nadir >20,000                                                       | 30%-50% drop<br>OR nadir 10-19,000                                                         | >30% drop OR<br>nadir <10,000                                           |
| Timing of platelet count fall       | 5-10 days OR fall <1 day if heparin exposure in past 30 days                         | 5 –10 days fall but not<br>clear; OR ≤1 day fall if<br>heparin exposure 30–100<br>days ago | Platelet count fall in<br><4 days without<br>recent heparin<br>exposure |
| Thrombosis or other sequelae        | New thrombosis OR<br>skin necrosis; acute<br>systemic reaction<br>after IV UHF bolus | Progressive OR recurrent<br>thrombosis;<br>erythematous skin lesions                       | None                                                                    |
| oTher causes of<br>thrombocytopenia | None apparent                                                                        | Possible                                                                                   | Definite                                                                |

#### Case 4(cont.)

- - Acute thrombosis of left common femoral, superficial femoral, popliteal, tibial and saphenous veins with absence of flow
  - · Right popliteal vein also showed chronic re-canalized

  - WBC 9900/uL • Hgb - 8.5 g/dL

  - Hct 24.7%Plt ct 89,000/uL · 170,000 on admission
  - SRA 100%



#### Case 4(cont.)

- ▶ Patient diagnosed with HIT
- ▶ Started on Lepirudin (Refludan®)

  - Not available since 2012
- ▶ Leg swelling improved
- ▶ Platelet count rose to 197,000/uL

#### Case 4(cont.)

- ▶ Diagnosis of HIT
  - Thrombocytopenia post heparin exposure
  - o DVT
  - Positive SRA
  - HIT score of 7 High probability

#### References

Cohen, R.A., Castellano, M., Garcia, C.A. "Heparin Induced Thrombocytopenia: Case Presentation and Review." *Journal of Clinical Medicine Research*, 2012 Feb; 4(1): 68–72. LaMonte M P, Brown P M, Hursting M J, Stroke in patients with heparin-induced thrombocytopenia and the effect of argatroban therapy. *Crit Care Med* 200432976–980. [PubMed]
Sancar, Eke., Heparin-Induced Thrombocytopenia, https://emedicine.medscape.com/article/1357846-print, updated April 24, 2018. Smythe MA, et al, The incidence of recognized heparin-induced thrombocytopenia in a large, teriary care teaching hospital. *Chest*. 2007 Jun. 131(6):1644–9. Riley, Paul. "Current Anticoagulation Monitoring and Measurement." *Lab Management*, 2018 Aug. 50(6):36–38.
Warkentin, Theodore E., Anderson, Julie A.M. "How I Treat Patients with a History of HIIT." *Blood*, 2016.
Warkentin T E, Aird W C, Rand J H. Platelet-endothelial interactions: sepsis, HIT, and antiphospholipid syndrome. Hematology (American Society of Hematology Education Program) 2003497–519. [PubMed]