Heparin Induced Thrombocytopenia

Angela Foley, MS, MLS(ASCP)SH
Associate Professor
LSUHSC School of Allied Health Professions
New Orleans, LA

Objectives

- Differentiate immune vs nonimmune HIT
- ▶ Contrast UFH vs LMWH
- Identify laboratory tests used to detect HIT
- Discuss alternative anticoagulant treatment options for patients with HIT

Heparin

- Therapeutic anticoagulant for treatment and prevention of thrombosis
- Extracted from porcine intestinal mucosa or beef lung

Types of Heparin

- Unfractionated Heparin (UH or UFH)
- Isolated from liver in1916 by Jay McLean and William Howell (Johns Hopkins University)
- Available for medical use since 1937
- Low Molecular Weight Heparin (LMWH)
 - Derived from UFH
- Available for medical use since 1993

Unfractionated Heparin (UFH)

- Heterogeneous mixture of sulfated mucopolysaccharides
 - 5,000 40,000 Daltons
- ▶ Binds to Antithrombin (AT)
 - via unique pentasaccharide sequence
 - enhances ability of AT to inactivate Xa, Ila (thrombin), and other serine proteases
- Administered IV
 - CABG surgery, angioplasty, stent placement, orthopedic surgery

- Anticoagulant of choice for pregnant women (does not cross placenta)
- Can be monitored by daily with APTT (1.5-2.5 times normal)
 - Inexpensive and readily available
- Can also monitor using anti-Xa assay and Activated Clotting Time (surgical arena)
- Can be neutralized easily by protamine sulfate
- Relatively inexpensive

Disadvantages of UH

- Inhibited by PF4
- Short half-life
- Can bind to other plasma proteins and endothelium
- · Adds to short plasma half-life problem
- Difficult to monitor accurately with APTT
- Can be associated with
 - Osteoporosis with long-term use
 - Heparin-Induced Thrombocytopenia (HIT)

Low Molecular Weight Heparin (LMWH)

- Derived commercially by chemical or enzymatic fractionation of UFH
- Smaller molecule than UFH
 - Short chains of mucopolysaccharides
 - < 8000 Daltons
- Brands available in US
 - Lovenox® (Enoxaparin) 1998
 - Fragmin[®] (Dalteparin) 1999
 - Innohep® (Tinzaparin) 2000

LMWH

- Administered SubQ
- Preferentially enhances inhibition of Xa and to a lesser extent thrombin (IIa)
- Safer to use in settings when less anticoagulant effect is needed
- VTE prevention
- Treatment of DVT and PE
- Usually does not require monitoring

LMWH

- Fewer side effects
 - Reduced interference with platelet function and vascular permeability
 - Less non-specific binding to proteins and cell surfaces
- Easier to calculate dosage established by weight-based nomograms
- More predictable response
- Longer plasma half-life
- Resists inhibition by PF4
- Frequency of HIT is < 1%</p>

Disadvantages of LMWH

- Higher doses, long term use or use during pregnancy may require some monitoring
- Must use chromogenic anti-Xa assay to measure/monitor
- Much more expensive than APTT
- Not available in all labs
- Mainly eliminated by kidneys
 - Problem for patients with end-stage renal disease

HIT

- Complication of heparin therapy (Usually UFH)
- ▶Two types
 - ∘Type 1
- ∘Type 2

Type 1

- ▶ Non-immune
- Presents within first 2 days after heparin exposure
- Platelet count will normalize with continued heparin therapy
- Results from direct effect of heparin on platelet activation

Type 2

- Immune mediated
- Typical presentation
 - 4 10 days after heparin exposure
- Rapid onset presentation
 - Fall in platelet count in first 24 hours
- Not a new immune response
- Patient already has circulating HIT antibodies associated with recent heparin exposure (past 100 days)

Type 2 (cont.)

- Delayed-onset HIT presentation
 - Thrombocytopenia is delayed for up to 3 weeks post heparin
- Has life and limb threatening thrombotic complications
- Term HIT generally refers to Type 2

Signs of HIT

- Decrease in platelet count
- Fall in count >50% of baseline count even if count remains above 150,000/uL
- Necrotic skin lesions at heparin

injection site

- Acute systemic reactions
 - Chills, fever, dyspnea, chest pain

Signs of HIT (cont.)

- DVT patients with HIT who are started on warfarin
 - Can lead to severe Protein C depletion with likely loss of limb
 - Activated Protein C with cofactor Protein S are Vitamin K dependent inhibitors of clotting

Consequenses of Type 2 HIT

- Venous thromboembolism
- Deep Vein Thrombosis (DVT)
- Pulmonary Embolism (PE)
- Arterial thrombosis less common
 - Myocardial Infarction (MI)
- NOTE:
 - Disorder is sometimes referred to as HITT
 - Heparin Induced Thrombocytopenia Thrombosis

Pathophysiology of HIT

- Platelet Factor 4(PF4)
 - $^{\circ}$ Released from plt $\alpha\text{--granules}$ during activation
 - Binds to heparin and forms complex
 - Can neutralize heparin-like molecules on endothelial cells
- IgG antibodies form to PF4-Heparin complexes
 - Seen in 90% of patients with clinical HIT diagnosis
 Antibodies bind to PF4-Heparin complex on platelet surface and activate platelets
- Can also be found in patients exposed to heparin but without clinical manifestations of HIT
- Much more likely to occur with UFH than LMWH

HIT in absence of heparin

- HIT antibodies recognize PF4 on platelet chondroitin sulfate
 - Activate platelets even when no heparin is present
- Explains
 - Delayed-onset HIT
 - · Thrombosis and thrombocytopenia without proximate heparin exposure
 - Spontaneous HIT syndrome
 - Persistant HIT

Epidemiology

- About 12 million people in US have some heparin exposure yearly (1/3 of all hospitalized patients)
- Frequency of HIT
- 1 5% in patients on IV UFH*
- <0.1% in patients receiving subQ UFH
- Overall risk
 - ~0.2% of hospitalized heparin-exposed patients

*More common in surgical patients receiving prolonged post op thromboprophylaxis (e.g. for 10-14 days post orthopedic or CABG/valve replacement surgery)

Mortality/Morbidity in HIT Patients

- Thrombotic complications in ~30%
- Overall mortality ~20%
 - Recent improvements in early diagnosis - better prognosis
- → ~10% require amputations or suffer other major morbidity

Race/Sex/Age

- Nonwhites
 - 2 3 times more likely to progress to HIT-associated thrombotic outcome
- Less risk than women
- Difference in risk is most striking in UFH treated women vs men
- No relationship between sex and risk for HIT in patients treated with LMWH
 Better to use LMWH for surgical thromboprophylaxis in women?
- Retrospective study of 408 patients with HIT
- 66% were >60

Summary of increased risk for HIT

- **UFH vs LMWH**
- IV vs SubQ heparin
- Longer duration of heparin use
- Surgical (esp cardiac, ortho) vs medical patient
- Female
- Over 60

Diagnosing HIT

- ▶ 4T's score
- Thrombocytopenia
- Timing of thrombocytopenia relative to heparin exposure
- Thrombosis or other sequelae of HIT
- Likelihood of oTher causes of thrombocytopenia

4 T's Score Feature 2 points 1 point 0 points >50% drop **AND** 30%-50% drop >30% drop **OR** Thrombocytonenia nadir >20,000 OR nadir 10-19,000 nadir <10,000 5-10 days OR fall 5 -10 days fall but not clear; **OR** <1 day fall if Platelet count fall in Timing of platelet exposure in past 30 days eparin exposure 30-100 days ago recent heparin count fall New thrombosis **OR** Progressive **OR** recurrent Thrombosis or skin necrosis; acute thrombosis; erythematous skin lesion None other sequelae systemic reaction after IV UHF bolus OTher causes of None apparent Possible Definite

Total scores and HIT probability

- ▶ 0 3; Low probability
- Negative predictive value 0.998
- Might exclude HIT without further lab testing and heparin can be continued
- ▶ 4 5; Intermediate probability
- ∘ ~10-14% chance of HIT
- ▶ 6 8; High probability
 - ∘ ~35% chance of HIT

Overdiagnosis of HIT?

- Retrospective study of surgical intensive care unit patients
- 8.6% of patients with low-probability 4T scores (0-3) were positive for HIT with lab testing
- 57% of patients with high-probability 4T scores (6-8) were HIT negative
- Conclusion
 - Testing or treatment for HIT should NOT depend on 4Ts score alone

HIT Expert Probability score (HEP)

- More detailed
- Improved diagnostic utility of 4T score
- Shown to be 100% sensitive and 60% specific for HIT
- Better correlation with serologic HIT testing

Complicating Conditions

- Septicemia with DIC
- **ITP**
- **TTP**
- **HUS**
- Liver disease with hypersplenism
- Transfusion reactions

Medications known to cause decreased plts GP IIb/IIIa inhibitors

GP IID/IIIa Innibitors
 IV plt aggregation inhibitors (Abciximab,

Medications known to cause decreased plts (cont.)

- Quinine and other antimalarial drugs
- Rifampicin, sulfur drugs and other antibiotics
- Gold salts and other heavy metals
- Sedatives and anticonvulsants
- Salicylates and other analgesics

Characteristic Features

- Timing of onset
- Decrease in plt count begins 5 14 days post start of heparin treatment
- Severity of thrombocytopenia
 - Usually mild to moderate
 - Plt count rarely <15,000/uL</p>
- Large-vessel venous or arterial thrombosis
 - Thrombosis may precede thrombocytopenia in up to 25% of patients with HIT

Heparin Treatment Monitoring

- Baseline platelet count
- Follow-up counts based on patient risk for HIT
 - Risk > 1% (UFH post cardiac or ortho surgery)
 - Plt count every 2 3 days from day 4 14 or until heparin is stopped
 - Risk <1% (LMWH)
 - ACCP suggests no plt count monitoring needed
- If count falls by >50% and/or thrombotic event occurs
 - · Perform diagnostic tests for HIT

Diagnostic Tests

- Non-functional Immunoassays
 - ELISA
- Functional assays
 - Seratonin Release Assay (SRA)
 - Heparin-Induced Platelet Aggregation assay (HIPA)
- Imaging studies

NOTE

- Really NO Gold Standard laboratory test for diagnostic confirmation HIT
- HIT requires a *clinical* diagnosis

Immunoassays

- **ELISA**
- Widely available
- Rapid turn around time
- High sensitivity (99%)
- Poor specificity (30 70%)

ELISA Procedure

- PF4 and heparin are coated to surfaces of microplate wells
- Patient serum or plasma is added to wells
- Antibody (if present) adhers to PF4-Heparin complex
- Plate wells are washed
- Enzyme-labeled monoclonal antibodies to human IgG (and IgM) are added and incubated
- Plate is washed
- > Chromogenic substrate is added
- Color development in well is positive test for heparin induced antibodies

ELISA (cont.)

- Non functional assay
 - · Can detect antibodies that are not pathologic
 - · Biologic false positive
- Kits which detect ONLY IgG antibodies have better correlation with Seratonin Release Assays (SRA)
- Less labor intensive than SRA
- Does not require blood from healthy drugfree donors
- Can be performed in most labs

Functional Assays

- Seratonin Release Assay (SRA)
 - HIT antibodies cause platelets to aggregate and release serotonin
 - Most sensitive
 - Availability largely restricted to HIT focused research centers
- **▶** HIPA
 - Heparin-Induced Platelet Aggregation assay
 - · Highly specific but less sensitive than SRA

SRA

- Normal donor platelets are radiolabeled with *14-C serotonin and then washed
- Washed *14-C seratonin plts + patient serum + low (therapeutic) and high heparin concentrations
- Positive test
 - $^{\circ}$ >20% serotonin release at low heparin dose (0.1 U/mL heparin)
- Considered gold standard assay
- Sensitivity 69% to 94%
- Specificity as high as 100%
- Technically demanding, costly, uses radioisotopes

HIPA

- Patient serum is mixed with donor platelets in presence of heparin
- Donor plt aggregation indicates presence of antibodies to heparin-PF4 complex
- Sensitivity varies from 30% to 81%
- Specificity varies from 82% to 100%
- One study of 146 patients
- $^{\circ}$ More sensitive than ELISA for lab confirmation of HIT
- Neither HIPA nor ELISA predicted thrombotic risk

Imaging Studies

- DVT can be silent
- Ultrasonography even in absence of clinical evidence may be considered

Pulmonary embolus (PE) located in the proximal pulmonary artery (PA) as seen on spiral CT.

Alternative Parenteral Anticoagulants (IV or injection)

- Direct Thrombin Inhibitors
- Argatroban (Acova®)
- FDA approved for prophylaxis and treatment of thrombosis in HIT patients
- Good for dialysis patients
- · Bivalirudin (Angiomax®)
- FDA approved for patients undergoing PCI or cardiac cath who have or who are at risk for HIT
- Lepirudin (Refludan®)
 - · No longer available

Alternative Parenteral Anticoagulants (cont.)

- Xa Inhibitors
 - Fondaparinux (Atrixa®)
 - not FDA approved for use in HIT but considered to be important treatment option especially for pregnant women (doesn't cross placenta)
 - · Off-label use
 - Danaparoid (Orgaran®)
 - · not available in US

Alternative Oral Anticoagulants

- ▶ Warfarin (Coumadin)
 - Monitored with PT/INR
 - Don't start with HIT patients until platelet count > 150,000/uL
- Direct Oral Anticoagulants (DOACs)
 - Direct Thrombin Inhibitor
 - Dabigatran (Pradaxa®)
 - Xa Inhibitors
 - RivaroXaban (Xarelto®)
 - · ApiXaban (Eliquis®)
 - EdoXaban (Savaysa®)

Note:

DOACs not fully assessed for HIT treatment None have FDA approval for use in HIT Can't be used for patients with kidney failure

Managing patient with history of HIT

- Treatment/prevention of VTE or management of Acute Coronary Syndrome
 - Use alternative anticoagulants in patients with persistent HIT antibodies
- However, UFH is clear anticoagulant of choice for 3 patient populations
 - Cardiac surgery
- Vascular surgery
- Hemodialysis

Long-term Monitoring

- HIT patients with isolated thrombocytopenia
 - Give alternative anticoagulants until platelet count recovers to stable plateau
 - Continue for up to 4 weeks with the alternative agent or warfarin
- HIT patients with thrombosis
- Give alternative anticoagulant followed by transition to warfarin only after plt counts have recovered to >150,000/uL
- Overlap with DTI until INR is therapeutic for at least 48 hrs
- Continue for 3 months

Long-term Monitoring (cont.)

- HIT patients who no longer have thrombocytopenia but need cardiac intervention
 - Heparin can be used short term for cardiac surgery
 - Bivalirudin or argatroban for cardiac cath or PCI(angioplasty with stent)
- HIT patients with persistant antibodies who need cardiac surgery
 - Should NOT receive heparin

Consequenses of missed diagnosis or misdiagnosis?

- Missed diagnosis
 - Increases risk of thrombosis, amputation or death
- Misdiagnosis can result in
 - Major hemorrhage
 - Thrombocytopenic patients treated with alternative anticoagulants
 - Thrombosis
 - Heparin treatment suspended unnecessarily

Case Study 1

- ▶ 55 year old female
- Admitted to hospital for coronary artery bypass surgery
- Had mild myocardial infarction 3 years previously and was treated with heparin therapy for 5 days without complications

Pre-op Lab Results

WBC 8200/μL

RBC 4.8 x 10⁶/μL

Hgb 13.5 g/dL

Hct 41%

Plt 265x10³/μL

PT 11.5 sec

APTT 36 sec

Case Study 1

- Patient underwent bypass surgery with associated heparin therapy
- 2 days post surgery patient complained of left leg pain and chest discomfort
- Thrombotic evaluation revealed DVT
- Ventilation-perfusion scan indicated a perfusion defect in right lung suggesting possible PE

4 T's Score

Feature	2 points	1 point	0 points
Thrombocytopenia??	>50% drop AND nadir >20,000	30%-50% drop OR nadir 10-19,000	>30% drop OR nadir < 10,000
Timing of platelet count fall	5-10 days OR fall ≤1 day if heparin exposure in past 30 days	5 –10 days fall but not clear; OR ≤1 day fall if heparin exposure 30–100 days ago	Platelet count fall in <4 days without recent heparin exposure
Thrombosis or other sequelae	New thrombosis OR skin necrosis; acute systemic reaction after IV UHF bolus	Progressive OR recurrent thrombosis; erythematous skin lesions	None
OTher causes of thrombocytopenia??	None apparent	Possible	Definite

Case Study 1

- Heparin was continued
- ▶ 7 days post-op
 - Left lower leg became blue and swollen
- \circ Platelet count dropped to 50 $\times 10^3/\mu L$
- Diagnosis?

Case Study 1 (cont)

- Left leg was determined to be nonviable and was amputated below the knee
- Maintenance therapy with warfarin was started
- Patient was discharged

What Should Have Happened?

- Platelet count should have been more carefully monitored
- Heparin probably should have been discontinued immediately when DVT was diagnosed
- Alternative anticoagulation started
- Bilvalirudin or Argatraban

Case 2 - 2005

- > 75 year old Hawaiian-Chinese female
- History of aortic stenosis, renal disease and hypertension
- Presented with pitting edema of lower legs
- Cardiac cath procedure
 - Showed severe aortic stenosis, aortic and mitral regurgitatio
 - Received flushes of 250 units UFH in venous and arterial sheaths
- Underwent cardiac surgery 10 days later
- Aortic valve replacement
- Intraaortic balloon pump (IABP)
- Received 32,000 units UFH

J Med Case Reports, 2007; 1: 13. Severe heparin-induced thrombocytopenia: when the obvious is not obvious, a case repor

Case 2 (cont.)

- Pre-op platelet count 108,000/uL
- Platelet count dropped to 25,000/uL by 3rd day post op
- Attributed to IABP*
- IABP was removed
- Thrombocytopenia continued
 - Refractory to plt transfusions over several days
- Renal function deteriorated
- CVVHD**
- Heparin-flushed dialysis catheter was placed
 - · additional heparin exposure in tubing
 - *Intra-Aortic Balloon Pump
 - **Continuous VenoVenous HemoDialysis

Feature	2 points	1 point	0 points
Thrombocytopenia	>50% drop AND nadir >20,000	30%–50% drop OR nadir 10–19,000	>30% drop OR nadir < 10,000
Timing of platelet count fall	5-10 days OR fall <1 day if heparin exposure in past 30 days	5 –10 days fall but not clear; OR ≤1 day fall if heparin exposure 30–100 days ago	Platelet count fall ir <4 days without recent heparin exposure
Thrombosis or other sequelae	New thrombosis OR skin necrosis; acute systemic reaction after IV UHF bolus	Progressive OR recurrent thrombosis; erythematous skin lesions	None
OTher causes of thrombocytopenia	None apparent	Possible	Definite

Case 2 (cont.)

- 7 days post-op
 Plt count 43,000/uL despite 48 units of plts
 Differential diagnosis
 Sepsis related DIC
 Accelerated plt removal 20 to CVVHD

- Right hand cyanosis developed
- Attributed to right radial arterial catheter
- Removed
- All toes and fingers showed severe ischemic changes
- > 2 days later Plt count dropped to 8,000/uL

Feature	2 points	1 point	0 points
Thrombocytopenia	>50% drop AND nadir >20,000	30%-50% drop OR nadir 10-19,000	>30% drop OR nadir < 10,000
Timing of platelet count fall	5-10 days OR fall ≤1 day if heparin exposure in past 30 days	5 –10 days fall but not clear; OR ≤1 day fall if heparin exposure 30–100 days ago	Platelet count fall in <4 days without recent heparin exposure
Thrombosis or other sequelae	New thrombosis OR skin necrosis; acute systemic reaction after IV UHF bolus	Progressive OR recurrent thrombosis; erythematous skin lesions	None
OTher causes of thrombocytopenia	None apparent	Possible	Definite

Case 2 (cont.)

- **FINALLY**
 - · Critical care specialist joined team
 - Ordered heparin-PF4 ELISA test
 - Strongly POSITIVE
 - Patient started on argatroban
 - 6 days post argatroban
 - Platelet count was >100,000/uL
 - Started on warfarin with goal of INR of 2 3
 - Argatroban discontinued after 5 day overlap

Case 2 (cont.)

- >27 days in intensive care
- No additional thromboses
- Required bilateral mid-foot amputations and amputations of all fingers of right hand

Case 2 (cont.)

- Reasons for misdiagnosis
 - 1. Plausable alternative explanations for thrombocytopenia
 - · Presence of the IABP
 - Presence of sepsis, CVVHD*
 - 2. Rapid-onset presentation
 - Usually platelet count drop happens 5 10 days after heparin initiation
 - Drop occurred on day 3 of heparin reexposure

Case 2 (cont.)

- Should have
 - Immediately ceased all heparin including flushes and LMWH
- Started argatraban
 - · lepirudin (available in 2005) was contraindicated due to acute renal failure

Case Study 3 - Patient with remote history

- of HIT requiring urgent cardiac surgery

 51 year old male with history of Hereditary Ervthroblastic Multinuclearity associated with a Positive Acidified Serum Test (HEMPAS)
- Developed severe HIT (heparin reexposure) Strongly positive for HIT antibodies
- Treated successfully with danaparoid
- ▶ 3 years later
- Developed acute pulmonary edema 20 to flail mitral valve
- Required urgent cardiac surgery
- No time to perform repeat HIT antibody testing prior to surgery

What treatment was recommended?

- HIT antibodies are remarkably transient
- Non-detectable 40 100 days post HIT episode (SRA vs ELISA-IgG)
- Probability of HIT antibodies being present after 3 years negligible
- Recommendation
 - Usual introperative anticoagulation with UFH
 - Post-op anticoagulation with danaparoid (Orgaran)
 - · Xa inhibitor
 - · Not FDA approved in US
 - · This patient was treated in Canada

Case 4

- > 70 year old woman
- 4 days post discharge following laparotomy for perforated duodenal ulcer with peritonitis
- Complaints of right-sided pleuritic chest
- Started day after discharge
- Associated with productive cough of whitish
- Chills but no fever
- SOB

Case 4(cont.)

- > Physical exam revealed obese woman in mild distress
- Lung fields had decreased air entry bilaterally, right side>left
- Metabolic panel essentially normal
- CBC
 - WBC 16,000/uL with 83% neutrophils
- Hgb 10 g/dL
- Hct 29.5%
- Plt ct 170,000/uL
- Ct scan pleural effusion
- Chest X-ray pneumonia in right lung

Case 4(cont.)

- Diagnosed with hospital acquired pneumonia
- Treated with IV fluids and antibiotics
- Day 2
- Improved symptoms
- WBC 8,000/uL
- · Hgb 8.6g/dL
- Hct 26%
- Plt ct 118,000/uL
- CT scan improving pleural effusion
- In evening patient complained of left knee pain

Case 4(cont.)

- > PE revealed erythema around left knee
- Patient denied trauma
 - Stated flow-tron was a little tight
- Flow-tron was loosened Tylenol given for pain
- One hour later
- Entire left leg noted to be swollen and tender
- Diagnosed with DVT
- Started on heparin infusion

4 T's Score **Feature** 2 points 1 point 0 points >50% drop AND 30%-50% drop >30% drop OR Thrombocytopenia nadir >20 000 OR nadir 10-19,000 nadir <10,000 5-10 days OR fall Platelet count fall in 5 -10 days fall but not Timing of platelet count fall clear; OR <1 day fall if <4 days without xposure in past 30 days sure 30-100 recent heparin days ago exposure New thrombosis OR skin necrosis; acute Progressive OR recurrent Thrombosis or thrombosis; erythematous skin lesion None systemic reaction after IV UHF bolus other sequelae OTher causes of None apparent Possible Definite

Case 4(cont.)

- - Acute thrombosis of left common femoral, superficial femoral, popliteal, tibial and saphenous veins with absence of flow
 - Right popliteal vein also showed chronic re-canalized thrombosis

 - WBC 9900/uL • Hgb - 8.5 g/dL
 - · Hct 24.7%
 - Plt ct 89,000/uL
 - · 170,000 on admission
 - SRA 100%

Case 4(cont.)

- Patient diagnosed with HIT
- Started on Lepirudin (Refludan®)

 - Not available since 2012
- Leg swelling improved
- Platelet count rose to 197,000/uL

Case 4(cont.)

- Diagnosis of HIT
 - Thrombocytopenia post heparin exposure
 - DVT
 - Positive SRA
 - HIT score of 7 High probability

References

Cohen, R.A., Castellano, M., Garcia, C.A. "Heparin Induced Thrombocytopenia: Case Presentation and Review." Journal of Clinical Medicine Research, 2012 Feb; 4(1): 68–72. LaMonte M P, Brown P M, Hursting M J, Stroke in patients with heparin-induced thrombocytopenia and the effect of argatroban therapy. Crit Care Med 200432976–980. [PubMed]
Sancar, Eke., Heparin-Induced Thrombocytopenia, https://emedicine.medscape.com/article/1357846-print, updated April 24, 2018. Smythe MA, et al, The incidence of recognized heparin-induced thrombocytopenia in a large, teriary care teaching hospital. Chest. 2007 Jun. 131(6):1644–9 Riley, Paul. "Current Anticoagulation Monitoring and Measurement. "Lab Management, 2018 Aug; 50(8):36–38.
Warkentin, Theodore E., Anderson, Julie A.M. "How I Treat Patients with a History of HIT." Blood, 2016.
Warkentin T E, Aird W C, Rand J H. Platelet-endothelial interactions: sepsis, HIT, and antiphospholipid syndrome. Hematology (American Society of Hematology Education Program) 2003497–519. [PubMed]