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General Learning Outcomes
• 1. Describe fundamentals of EBP as discussed 

in graduate curricula, including descriptive, 
inferential, and probabilistic approaches to 
EBP. 

• 2. Explain differences between probabilistic 
and classical inferential methods to 
determine conceptual differences between 
statistical significance and clinical 
significance.
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General Learning Outcomes 
(Continued)

• 3. Specify how these principles might be used 
by clinical practitioners in evaluating 
assessment and intervention data.
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Specific Learning Goals

1. The history of NHST (Null Hypothesis Testing 
Method) and the P-value approach and how 
these methods have been inappropriately 
combined leading to the various fallacies and 
misinterpretations of statistical findings.

2. Why classical statistical methods in current use 
are not well designed for EBP and how NHST 
and P-values can actually hinder the 
development of new knowledge.
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Specific Learning Goals (Continued)

3.  Why the probabilistic method (called Bayesian 
method) is more clinically relevant to the goals of 
EBP than classical statistical methods.
4.  Important conceptual/mathematical differences 
between statistical significance and clinical 
significance.
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Sackett’s Definition of Evidence Based 
Practice (EBP)

“EBP is the integration of clinical 
expertise, patient values, and the 
best research evidence into the 
decision making process for 
patient care.”
David Sackett, 2002
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Sackett’s Concept of EB

P
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Specific Definition of EBP 

• The goal of EBP is the integration of: (a) 
Clinical expertise/expert opinion, (b) External 
scientific evidence, (c) 
Client/patient/caregiver perspectives to 
provide high-quality services reflecting the 
interests, values, needs, and choices of the 
individuals we serve.
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Important Principles

•Understanding the quantitative 
aspects of research design and data 

analysis promotes a deeper 
understanding of original research.

•The content of an EBP course should 
be based on what scientific literacy 

and skills clinicians require to 
accurately interpret evidence and 

apply it to individual clients.

9



Ideal EBP for Clinical Professionals
• One that contains such two main 

perspectives as “Statistical Significance” 
and “Clinical and Practical Significance.”

• Under the Frequentists approaches, we 
use P value and Hypothesis tests to 
determine “Statistical Significance” while 
effect sizes and RCI (Reliable Change 
Index) to determine “Clinical and 
Practical Significance.”
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Ideal EBP for Clinical Professional 
(continued)

• We need “Personal Benchmarks” to make 
judgments about the results. The remedy is 
to introduce Bayesian methods (aka EBP 
Statistical Methods: to be discussed later) to 
clinical professionals that allows one to 
freely express her subjective views and 
implement it into clinical decision making.
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Ideal EBP for Clinical Professionals 
(continued)

• Clinicians should ask their clients about personal 
feelings and concerns about the treatment that they 
are receiving. “How to measure your client’s quality 
of life?” is the central issue of EBP. The Bayesian 
methods can accomplish this task. The authors refers 
to Evidence Based Statistics (EBS).

• Statistical methods in “current use”  lacks this 
“personal” component, therefore, it is not ideal for 
EBP.
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Clinical Inference
Hypothesized underlying disorders (or diseases)

Disorder A     Disorder B      Disorder C
Deduction                                                             Induction

Symptom A   Symptom B  Symptom C  Symptom D    Symptom E

The parallels between the processes of induction and 
deduction in clinical inference
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What are the disadvantages of “Deductive 
Reasoning ”?

 Clinically, the process has very little value , i.e., 
we start with a null effect (Ho is true) and 
predict what we should see given that the null 
hypothesis is true. You are diagnosing the client 
before evaluating and analyzing the actual test 
results. This is obviously unrealistic.

Outcomes are dichotomous, i.e., if you reject 
the null (P<0.05), then statistically the 
alternative hypothesis is true. This does not 
provide a direct measure of how credible each 
hypothesis is. 
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Is this exactly what you want to find out as 
a clinician?

• Of course, not. In many cases, what a 
clinician wants to know is the credibility of his 
(or her) research hypothesis (versus null), 
given your observation of the actual sample 
data. Symbolically, this can be expressed as 
follows.

• Pr[ the credibility of research hypothesis, 
given your observation of the actual sample 
data]
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What is “Inductive Inference”?

• It goes in the reverse direction. On the 
basis of what we already observe, we 
measure/evaluate what hypothesis is 
most credible. It provides a direct 
measure of how credible each 
hypothesis is (Strength of Evidence). 

• Symbolically, this is written as follows.
Probability[ Credibility of hypothesis, 

given the results of actual sample data]
= P [Hypothesis | Data]
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Clinical Practicality
• In a clinical setting, “Inductive inference” is 

more practical than deductive inference 
because it allows a clinician to derive the most 
likely diagnosis of the disorder. 

• It takes into the account the clinician’s 
personal/professional view about the disorder 
and the likelihood of the evidence of several 
hypotheses to be tested. Implementation of 
their subjective beliefs into the decision 
making process is not neglected.
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Quiz 1: True or False

• P-value=0.03 means “There is a 3% chance 
that the null hypothesis is correct.” or 
equivalently, “There is a 97% chance that the 
null hypothesis is incorrect.”
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Answer

• False. Why? Let’s discuss! Is there anyone 
who can explain why the statement is False?

19



Definition of P-value

• P-value does not calculate the probability 
that the null hypothesis is True or False based 
on the actual data observed, no matter how 
much we wish it to be.

• It only calculates the probability of obtaining 
a result as exact as that observed or “more 
extreme” than that observed, given that the 
null hypothesis is true, i.e., no treatment 
effect is assumed before data collection.
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Correct Interpretation 

• The probability of obtaining an exact result or 
“more extreme” result from the sample is 3%, 
given that the null hypothesis is true. 

• Using R. Fisher’s logic, the P value measures 
how severely the null hypothesis was 
contradicted by the actual sample data. 

• What does it mean? Can we describe it 
graphically?
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What does it mean “more extreme”?
• P value (aka Imprecise P value) calculates the 

probability of not only the exact observed data 
value but also non-occurring observed data 
values that did not take place.

• Very often, the inclusion of such non-occurring 
event “more extreme” leads to a less reliable 
and valid conclusion.

• Fisher believed that the inclusion of “more 
extreme than exact data” would give little 
quantitative impact on the overall conclusion 
(true if and only if p value is extremely small)

• Fisher’s P value is called “Imprecise P value.”
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0                       1.65  obs.value

The bell shaped curve represents the probability of every possible outcome under the null 
hypothesis.  Both α (the type I error rate) and the P value are “tail areas” under this curve.  
The tail are for α is set before the experiment, and a result can fall anywhere within it.  The P 
value tail area is known only after a result is observed, and, by definition, the result will always 
lie on the border of that area.

α = .05

P value < .05
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0 Observed 
value

Fisher’s Imprecise P 
Value
(green area)
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Quiz 2: True or False 

• P<0.05 means that the result was found to be 
both statistically and clinically significant
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Answer

• False: It may sound correct. But “statistical 
significance” and “clinically significant” are 
philosophically and conceptually different. P-
value is mainly (not entirely) designed for 
“statistical significance” of the data in a 
sample, given that the null hypothesis (Ho) is 
true. It does not produce an index or 
numerical value indicating “how clinically 
significant.”
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The Main Question

• “Statistical significance”---determine whether 
a difference exists or not between two or 
more treatments

• “Clinical significance”---determine how 
credible such a difference is, i.e., it is the 
degree of the difference that matters, not the 
existence of the difference.
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Fisher’s P value

Is intended to measure the strength of the 
evidence using a flexible inferential measure.  
Fisher, despite a popular belief,  never 
established such guidelines as: “if p<0.01, the 
result is highly significant.”, “if 0.01≤p<0.05, 
the result is significant.”, or “if p≥0.05, the 
result is not significant.”
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Neyman-Pearson’s Hypothesis Test

Is intended to establish “a rule of behavior” for 
evaluating statistical data. Unlike Fisher’s  P value 
approach, they used such “error rates” as Type 1 
error (α), Type 2 error (β), and Power (1-β) for 
decision making. Whereas Fisher’s P value 
approach only tested a null hypothesis (Ho),  
Neyman-Pearson added a rival hypothesis called 
the “Alternative Hypothesis (Ha)” for decision 
making.
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0                       1.65  obs.value

The bell shaped curve represents the probability of every possible outcome under the null 
hypothesis.  Both α (the type I error rate) and the P value are “tail areas” under this curve.  
The tail are for α is set before the experiment, and a result can fall anywhere within it.  The P 
value tail area is known only after a result is observed, and, by definition, the result will always 
lie on the border of that area.

α = .05

P value < .05
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Number of 
Hypotheses Tested:

Is it Inferential?

Assessment Tools:

P Value Approach Hypothesis Tests

Fisher Neyman and Pearson

One (Null 
Hypothesis Ho)

Two (Null Ho and 
Alternative Ha)

Yes, it is intended to 
use as a flexible 

measure

No, it is a rule of 
behavior

Post-trial Conditional 
Probability based on 

an observed value 
and the truth of Ho

Pre-trail error rate 
called Type 1 error 
(α), Type 2 error (β) 
and Power of a Test 

(1-β)

Originator:
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Continued from previous slide.

P Value Approach Hypothesis Tests

Amount of evidence 
against Ho is small 
enough to detect a 

treatment effect

Reject Ho if |observed 
value|> Critical 

Value. Otherwise, do 
not reject Ho

None, although 5% is 
frequently used in 
clinical research

α = 1%, 5%, or 10%
β ≤ 10% or 20%

Power > 80% or 90%

Single experiment Hypothetical long-run 
frequencies

No (Fisher refused to 
implement one’s 

subjective view into 
decision making 

process)

No (Neyman and 
Pearson believed that 
all reasoning should 

be deductive)

Decision Rule:

Specific Benchmark 
for Decision Making:

Basis for Conclusion:

Support Bayesian 
Idea?
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33

Imprecise P value (aka Fisher’s) versus 
Precise P value (EBS P value)

• There are two types of so-called P values. The 
P value in current use (what you have learned 
and used) is called “Imprecise P value.” 
Symbolically, it is written as follows:

P [(exact data) plus (“more extreme” than  
exact data), given that Ho is true]
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0 Observed 
value

Fisher’s Imprecise P 
Value
(green area)
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Precise P value
“Precise P value” (aka  EBS P value or Bayes 

Factor or BF)can be expressed as follows:

P [(exact data), given that Ho is true]

It measures a true and exact strength of the 
clinical evidence in support of Ho.
Can you see the difference between the 
“Imprecise p value” and the “Precise p value”?
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Observed value0

A = Precise P Value

The precise P value corresponds to the curve height at the 
observed value, denoted by A. 

Mathematically, it is calculated as  
2

2
( . )obs value

e−

Graphical Illustration of Precise P Value

36



What is “Precise P Value”?

• It is also known as Bayes Factor (BF). BF is one of 
the components used in applying the Bayes’ Rule. 
(To be discussed shortly).

• As we discuss it later, the Imprecise p value 
greatly overstates the amount of evidence against 
Ho. Very often, we tend to overestimate the 
effectiveness of a treatment due to the result 
derived from the Imprecise p value. In short, 
“Statistical Significance” is greatly exaggerated.
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Practical Example (to show the 
difference)

• If a particular subject ranks 10th out of 100 subjects, 
that subject is reported as being “within the top 
10%”---Imprecise P value idea; we don’t know 
exactly where (s)he ranks but the ranked number is 
between 1st and 10th inclusively.

• If the same subject is reported as being “exactly the 
10th in rank.”---Precise P value idea; we know exactly 
where (s)he ranks and there is no need to include 
other ranking numbers.
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Results 

Under the current use of P value (imprecise) that can     
be seen in the clinical sciences literatures, the 

effectiveness of a treatment  is clearly overstated and 
found to be not quite as strong as the studies report. 
Additionally, P value (Fisher’s p value) is often used to 
determine the effectiveness of a treatment that is misused. 
P value does not answer the question, “How effective is 
the treatment based on what was actually observed?”
So, what they reported are credibility of the clinical evidence
based on the Ho effect (no difference), not credibility of the 
treatment based on the clinical evidence.
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Confidence Intervals 

Estimated range of values with a given 
probability (90%,95%, or 99%) of including 
the population parameter of interest. The 
range of values is based on the result of a 

particular sample.
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Q:  Why not the Confidence Interval 
method?

• It does not measure the strength of clinical 
evidence because researchers only determine  
whether a particular CI includes the Ho effect 
(no treatment effect, “0”) rather than 
considering the clinical implications of the Ha 
(full range of the treatment effect).

• The CI, like P-value approach, is based on the 
assumption of the Ho effect, so that it does 
not calculate the likelihood of clinical 
evidence.-, i.e., it still does not measure 
‘Clinical Significance”. 41



Q: Why not Confidence Interval? 
(continue)

• It very often states that new research findings are 
assessed just in terms of whether their 95 % CI 
excludes the Ho effect, while ignoring the width of 
the interval range for the population mean or mean 
difference. 

• It does not measure “Clinical Significance”, despite 
the fact that it looks more promising than the P 
value approach or hypothesis tests. One cannot 
implement the clinicians’ beliefs, whether subjective 
or objective, into the clinical decision making 
process.

• The presence or absence of a treatment effect is 
always contingent on the inclusion of “0” in the 
interval. Again, CS is ignored.

42



Bayesian Process (EBS Approach)
• Prior (clinician’s views, opinions, and perspectives 

before actual data observation)—”Clinical 
Significance (CS)”

• Data (clinician examines what is actually observed in 
a sample/testing/sessions to determine the severity 
of a particular disorder)—”Statistical Significance 
(SS)”

• Posterior (Incorporate “Prior” with “Actual Data”, 
clinician will derive more objective view than 
Prior)—”CS + SS Combined”

• Keep repeating this process to eventually derive the 
“maximum likelihood” of an observation of interest.
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Bayes Theorem, in words.

Prior odds of hypothesis being true
(before seeing data)

X
Likelihood Factor

Final (“posterior”) odds of null 
hypothesis being true

Subjective 
component

X
Data component 

(“evidence”)

Probability of 
truth

44



• The Bayesian approach incorporates  
Deductive reasoning i.e., what causes this 
particular disorder?, what kind of symptoms 
are associated with the disorder? and 
Inductive reasoning i.e., what is the 
probability that a client has the disorder given 
that certain symptoms are present?

• Statistically and clinically well-founded aid for 
distinguishing clinical utility from statistical 
reality. 

Advantages of the Bayesian Approach
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Summary: Bayesian Interpretation

• “Deductive” = Calculating “Prior Probability” 
from “Posterior Probability”.

• “Inductive” = Calculating “Posterior 
Probability” from “Prior Probability”.

• “Minimum Bayes Factor” = A bridge between 
“Deductive” and “Inductive” inference 
process.
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Clinicians are natural Bayesians
• Clinicians do not typically use the P-value 

approach for diagnosis, i.e., preexisting 
condition “Null Effect” is not typically true and 
unrealistic.

• Clinicians have some belief (subjective or 
objective belief ) prior to actual data collection. 
Clinicians’ beliefs may come from their clinical 
experience, information from teachers, 
parents, doctors, other clinicians, and research 
literature. These beliefs are of value and should 
not be ignored. According to the principle of 
EBP, they should be included in the clinical 
decision making process.
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Why should  clinicians and researchers care 
about Bayesian methods?

• Reason 1 : Classical statistical methods are 
entirely deductive and do not reveal what 
clinicians are hoping to find

• Reason 2 : Classical statistical methods 
overstate the amount of the evidence against 
Ho (“statistical significance” is overly 
exaggerated).
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The “odds” form the Bayes’ Theorem

(Posterior Odds)        = (Prior Odds)   . (Likelihood odds)

0 00Pr( ) Pr( )Pr( )
Pr( ) Pr( ) Pr( )a a a

H Data Data HH
H Data H Data H

= •
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Three Components of the Bayes’ Rule

• [Prior odds ratio] = A clinician’s subjective 
view before observing actual data. It includes 
only “Clinical Significance (CS)”

• [Bayes Factor] = The actual observed data 
speaks about the clinician’s view. It includes 
only “Statistical Significance (SS)”

• [Posterior odds ratio] = CS + SS (updated prior 
odds ratio)
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Fundamentals of Bayes’ Rule: In 
Words

Posterior Prior Odds Bayes
Odds of H0 of H0 Factor (BF)

(after seeing data)         = (before seeing data)      x         (likelihood ratio)
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Exchange Rate for P-value and Bayes’ 
Factor

• Calculate the Bayes’ factor for the same 
hypothesis for which the P-value is being 
calculated, that is , we must calculate the 
observed difference of Ho and Ha. (The ratio of 
Ho to Ha in terms of effectiveness)

• Because a smaller P-value means less support for 
Ho, we must structure the Bayes’ factor the same 
way, so that a smaller Bayes’ factor also means 
less support for Ho (or more evidence against it).
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Exchange Formula for Bayes’ Factor

• Bayes’ Factor (BF) is calculated as follows.

• BF = 

where Z is the number of standard errors 
from the null effect (Ho effect), i.e., observed 
Z value derived from the actual sample. BF is 
considered to be Precise Bayesian P-value 
(aka Bayes Factor). N(0,1) is assumed.

2

2
z

e
−
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Scenario (Stuttering)

• A clinician wants to determine whether 
prevalence rate of stuttering is 0.8% (Morley, 
1953; Hull, Mielke, Willeford, & Timmons, 
1976) or not. She used SSI-3 (Stuttering 
Severity Instrument-3) to examine the level 
of severity of stuttering. Based on her 
observation of 100 subjects, two were 
diagnosed as “Severe” and “Very Severe” 
(Total overall score≥32)
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P – value calculation for SSI – 3 example.

Given n = 100, x = 2, p = 0.008, and 

Ho:  p = 0.008, Ha 0.008 (two-tailed) 

we can calculate the p – value as follows

≠
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Using the binomial probability distribution, 

P–value  = P[Data* | Ho is true]
= P[n≥100 and x=2 | p=0.008]
= P[n=100, x=2 | p = 0.008] + 

P[n =101, x=2 | p=0.008] + 
P[n=102, x=2 | p=0.008] + … = .04673

(Ho is rejected, i.e., “statistically significant”)

The corresponding z value for p = .04673 (two-
tailed) is 1.989.

≥
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Using Bayesian approach, Bayes Factor 
(aka Precise P value) is calculated as:

Bayes Factor (BF) =        =               = .1383 (or            )

What does this number indicate?  Is there any way 
for us to know the exchange rate of Fisher’s P 
value (0.04673) and Bayes Factor in measuring 
the strength of clinical evidence?

2

2
z

e
−

2(1.989)
2e

−
1

7.23
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What is the exchange rate for p = .04678 in 
the language of Bayesian?

P [Imprecise Data | Ho is true] = Imprecise P value 
(aka Fisher’s P value) = .04673

In Bayesian, this means that 
P [Precise Data | Ho is true] = Precise P value (BF) 

= .1383. As you can see, the classical imprecise 
p value overstates “Statistical significance” in 
favor of Ho (or against Ha) by almost three 
times (0.1383÷0.04673≈3).
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Posterior Prior Likelihood Odds
Odds Odds                or BF

If we start out P(H0) = 0.5, P(Ha)=1-P(H0)=0.5, 
and BF= = 0.1383 (it means that Ha 
favors Data 7.23 times more than Ho does)
Symbolically,

0.5 0.5 1
3.615 0.5 7.23

= •

1
7.23

 
 
 

0 00Pr( ) Pr( )Pr( )
Pr( ) Pr( ) Pr( )a a a

H Data Data HH
H Data H Data H

= •
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Therefore, Posterior Odds=0.5
0.5

● 1
7.23

= 0.1383 
(Posterior Odds is equal to 0.1383, given that 
a clinician starts out 50-50 chance of the 
existence of a treatment, i.e., P (Ho) = P(Ha) = 
0.5).

𝑃𝑃(𝐻𝐻𝐻𝐻 |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)
𝑃𝑃 (𝐻𝐻𝐷𝐷 |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)

= 0.1383 = 0.1383
1

-- “how strongly does 
the clinical evidence support Ho over Ha?”. 
The strength of the clinical evidence in 
support of Ho over Ha is 0.1383 to 1. If you 
wish to obtain P(Ho |Data), we divide 0.1383 
by 1.1383 (0.1383 +1), that is, 0.1215. That is 
higher than Fisher’s P value of 0.04673.
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Clinical Significance
• If we start out P(Ho)=0.5 (Clinician’s view 

about “No treatment effect before actual data 
observation), we obtain P (Ho | Data) = 0.1215 
after we observe the data. Clinical Significance 
about “No treatment effect” dropped from 
50% (pre-data) to 12.15% (post-data). It also 
means that the clinical significance about the 
“Treatment effect” increased by 37.85% (50%-
12.15%). So, a clinician can now implement a 
12.15% into P (Ho) for the future study to 
make the result more “Clinically-Sound”.
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P value
(z score)

BF 
(Precise P 

value)

Confidence in 
Ho (assuming 
that we start 

out 50-50 
prior 

probability)

Strength of 
Evidence

P = .04673
(z = 1.989)

.1383 •Classical:
4.673%

•Bayesian:
12.15%

•Classical:
“significant”
•Bayesian:
“weak/
moderately weak”

1
7.23
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Table 1.  Correspondence of two sided, fixed sample size P-value under Gaussian 
distribution with the minimum Bayes factor, that is, the strongest against the null 
hypothesis

Decrease  in the probability 
of the null hypothesis, %

P value (Z-score) Minimum Bayes Factor Strength of Evidence From To no less than

0.10 0.26 Weak 75 44

(1.64) (1/3.8) 50 21

17 5

0.05 0.15 Moderate 75 31

(1.96) (1/6.8) 50 13

26 5

0.03 0.1 Moderate 75 22

(2.17) (1/10.5) 50 9

33 5

0.01 0.04 Moderate 75 10

(2.58) (1/28) to strong 50 3.5

60 5

0.001 0.0005 Strong to 75 1

(3.28) (1/217) very strong 50 0.5

92 5
63



Interpretation of Table from previous 
slide

• If you wish to obtain Fisher’s P value 0.05, you 
must start out P (Ho) = P (Clinician’s initial view) = 
0.26. This means that you are certain that you are 
less likely to support Ho (no treatment effect 
exists) before the study. In Classical Statistics, there 
is no room for such a subjective view stated by a 
clinician. We do not even know the probabilities of 
the truth of Ho and Ha before the study. 
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KEY POINTS
 Clinical decision making is fundamentally 

Bayesian because of its cumulative nature and 
inductive reasoning pattern.

 Clinicians’ experience and (subjective beliefs) 
must NOT be ignored.  They should be 
cherished and implemented into the decision 
making process for a more accurate conclusion.

 Clinicians apply Bayesian statistical reasoning in 
framing and revisiting differential diagnoses.

 A Bayesian approach is essential for Evidence-
Based Practice.
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Conflict among three statistical 
perspectives

• Fisher---Null hypothesis only; post-trial statistical 
error rate (P value), Ignore β (type 2 error), sample 
size by rule of a thumb, no probability statement 
about the truth of the null hypothesis

• Neyman-Pearson---Two conflicting hypotheses, pre-
trial error rate (α and β), compute sample size, no 
probability statement about the null hypothesis

• Bayesian--- Flexible number of hypotheses (one, 
two, etc), designed for calculating the probabilities 
(credibility) of hypotheses of interest based on data 
observed
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Bottom Line
• The main goal of “Statistical Inference” is to best 

predict Population parameters based on Sample 
statistic. It goes from Specific (Sample) to General 
(Population). It is Inductive Pattern.

• P value and Hypothesis Tests are Deductive 
inferential measures. 

• One cannot answer Inductive-natured question by 
using Deductive tools. 

• It is clinically more appropriate, direct, and 
meaningful to use Bayesian approach to accomplish 
the mission of “Statistical Inference.”
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Four Components of a screening test:

(1)Sensitivity = P (the Test is Positive, given that 
Disorder exists)
(2)Specificity = P (the Test is Negative, given that No 
Disorder exists)
(3)Predictive Value Positive = P (Disorder exists, given 
that  the Test is Positive)
(4)Predictive Value Negative = P ( No Disorder exists, 
given that the Test is Negative) 

68



Clinical Implications (1)
• One of the main strengths of Bayesian method over 

traditional inferential method is that it permits the use of 
information from previous clinical research in the analysis 
of new results. This feature would invite several clinicians 
with different views (initially) to state their own opinions 
as a part of their research prior to actual data collection. 
After analysis of the new common data, the level of 
subjectivity about the event of interest (eg., Prevalence 
rate of a particular disorder or disease) will be reduced 
because of the common data.
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Clinical Implication (2)
• It also operates in a cumulative manner, not in a 

terminal way. One who desires to go further than the 
first trial, one can use the final probability obtained at 
the end of the 1st trial (posterior probability) as a new 
initial probability (prior probability) of the second trial, 
and proceed with new common data collection to 
update the clinicians’ beliefs. This repetition of the 
process will certainly minimize discrepancies among 
the different views among several clinicians and 
increase the credibility of a desired conclusion about 
the event of clinical interest, whatever it may be. 
Hence, the Bayesian method is more clinically relevant 
to the diagnostic process itself than is traditional 
inferential method.
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Why Bayesian?

• Fisher’s P value---Detect “Statistical Significance” 
only based on the assumption Ho is true

• Neyman-Pearson Hypothesis Tests---Detect 
“Statistical Significance” only based on α, β, and the 
fixed power of a test (1-β).

• Bayesian---Detect “Statistical”, “Clinical”, “Practical”, 
and “Personal” Significance based on Prior 
Probability, Bayes Factor, and Posterior Probability

• Bayesian approach is more gearing toward Clinical 
Research and more clinically relevant
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Bayesian accomplishes the goal of EBP

• Clinical expertise/expert opinion (“clinical 
significance” can be done by Prior 
Probability)

• External scientific evidence (“clinical and 
statistical significance” can be done by Prior 
Probability and MBF)

• Providing high-quality service to clients 
(“clinical, statistical, practical, and personal 
significance” can be done by Posterior 
Probability)
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Important facts that clinical 
professionals must know

1. Absence of Evidence ≠ Evidence of Absence
2. Statistical significance ≠ Clinical significance
3. Identical P value ≠ Identical Evidence
4. P(Ho | Evidence) ≠ P(Evidence | Ho)
5. P value ≠ P(Ho | Evidence), i.e., does NOT 

measure the credibility of the hypothesis.

73



Basic Questions for Clinical 
Professionals

• 1. What do you eventually want to find out?
• 2. How do you distinguish between “Statistical 

Significance” and “Clinical Significance.”?
• 3. Can P-value and Hypothesis Tests truly 

measure the strength of evidence when you 
make a diagnosis? If not, how can we measure 
the strength of evidence accurately?

• 4. How can we increase the accuracy of 
diagnosis/clinical decision making?
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Future Recommendations

• Incorporate “Bayesian Perspectives” into Research 
Methods courses.

• Redefine “Evidence-Based Statistics” in a more 
practical way.

• Implementation of “subjectivity” into clinical decision 
making is a good thing. We will not lose scientific 
values, rather improve the accuracy of diagnoses.

• Research works in a cumulative way, not in a 
terminal way.
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Future Recommendations (Continue)

• Promote Bayesian Methods, that can combine such 
four essential elements for EBP as Statistical, 
Practical, Clinical, and Personal Significance, as an 
alternative method to the traditional methods 
including P value, Hypothesis Tests, Meta Analysis, 
Confidence Intervals.

• Present philosophical foundation of  and rationale 
behind Bayesian Statistics in Research Methods 
course.
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Sir Francis Bacon (1561-1626)

"If we begin with 
certainties, we shall 
end in doubts; but if 
we begin with 
doubts, and are 
patient with them, we 
shall end with 
certainties."

S
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Yogi Berra, New York Yankees,1989

• “It ain’t o    
over”
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Abstract 
 
Although Bayesian methodology has become a powerful approach for describing uncertainty, it 
has largely been avoided in undergraduate statistics education. Here we demonstrate that one can 
present Bayes' Rule in the classroom through a hypothetical, yet realistic, legal scenario designed 
to spur the interests of students in introductory- and intermediate-level statistics classes. The 
teaching scenario described in this paper not only illustrates the practical application of Bayes' 
Rule to legal decision-making, but also emphasizes the cumulative nature of the Bayesian 
method in measuring the strength of the evidence. This highlights the Bayesian method as an 
alternative to the traditional inferential methods, such as p value and hypothesis tests. Within the 
context of the legal scenario, we also introduce DNA analysis, implement a modified version of 
Bayes' Rule, and utilize Bayes’ Factor in the computation process to further promote students' 
intellectual curiosities and incite lively discussion pertaining to the jury decision-making process 
about the defendant's status of guilt. 
 
1.  Introduction 
 
In recent years, Bayesian statistics has gone from being a controversial theory on the fringe of 
mainstream statistics to a methodology widely accepted as a possible alternative to classical 
approaches. Indeed, Bayesian methods have become increasingly common in a wide range of 
areas and topics, including marketing, economics, school assessment, nuclear waste disposal, 
medicine, and the law. They have, for example, permeated nearly all of the major areas of 
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medical research, from clinical trials and survival modeling, to decision-making in the use of 
new technologies (Ashby 2006). The use of Bayesian statistics in legal research and proceedings 
has been no less remarkable. It has been put to use to evaluate the strength of legal evidence for 
jury deliberation in hypothetical scenarios and actual court cases (Finkelstein and Fairley 1970;  
Marshall and Wise 1975; Finkelstein 1978; Fienberg and Kadane 1983; Goodman 1999; Satake 
and Amato 1999; Goodman 2005). 
 
Since many students may enter careers that will include a Bayesian approach to research, the 
importance and practical necessity of integrating Bayes' Rule within the teaching of conditional 
probability is becoming increasingly clear (Satake and Amato 2008). Although several 
undergraduate-level textbooks that are written from a Bayesian perspective, and/or that present 
the clinical application of Bayes’ Rule, are currently available (Berry 1996; Albert and Rossman 
2009; Agresti and Franklin 2012; Peck, Olsen and Devore 2012), our informal survey of several 
other widely-used introductory level statistics textbooks indicates that textbooks typically 
dedicate a single page to Bayesian statistics, suggesting that the topic of Bayes' rule is considered 
optional at best (De Veaux, Velleman and Bock 2008; Pfenning 2011; Utts and Heckard 2011). 
Winkler (2001) has made the following observation:    
  
 “Very little has been done to make Bayesian methods accessible to a  
 beginning audience. A notable exception is Berry. The typical text for  
 the beginning course, however, follows the frequentist tradition and pays  
 at most a bit of lip service to Bayesian analysis.” (p. 61) 
 
Research in statistics education suggests a prevailing belief that Bayesian approaches are not 
necessary for the understanding of subsequent statistical content (Rossman and Short 1995). 
Further, the use of Bayes' Rule is foreign to most students and instructors at the introductory 
level (Satake, Gilligan and Amato 1995; Satake and Amato 2008; Maxwell and Satake 2010). 
With a few notable exceptions, for example (Albert 1993), most of the texts, software packages, 
and instructors at the introductory and intermediate levels, have, either intentionally or 
unintentionally, long neglected and avoided Bayesian methods.  
 
What must we do to gain more respect and recognition for Bayesian thinking at the introductory 
and intermediate levels? We strongly believe that the answer to the question lies in presenting 
Bayes’ Rule through interesting real life examples that are relevant to the students in the 
classroom. This approach will not only help students have a better insight into Bayes’ Rule in 
general but will also provide pedagogical merit to the instruction as we will discuss further in 
this paper. The purpose of this paper is to introduce an approach to the teaching of Bayes’ Rule 
within the context of a hypothetical, yet realistic, legal scenario intended to spur the interests of 
students. This approach demonstrates how Bayes’ Rule can be used to revise and update the 
probability of an event of interest as new information is introduced. 
    
1.1  Philosophical Foundation of the Application of Bayes' Rule to Law 
 
In his seminal work on formal reasoning and mathematics, George Polya attempted to establish a 
mathematical foundation of what is termed "plausible reasoning” (1954). The foundation is 
based on syllogistic and mathematical descriptions that serve as guides or heuristics for 
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analyzing patterns of reasoning. These heuristics generalize conclusions from specific causes and 
vice versa. In Polya's view, this type of inductive reasoning is a special case of plausible 
reasoning and is quite conspicuous in everyday life. In his discussion of consequences, 
conjectures, inferences, and the formulation of patterns of plausible reasoning, he frequently uses 
examples or scenarios from courts of law to illustrate his points. To some extent, Polya's goal is 
to determine how well his formulated patterns relate to the "calculus of probability," and whether 
they can function as "rules" of plausible reasoning. Whether or not he succeeds in all of his 
attempts, the elegance of his work, in large part, is in its conciseness and applicability to legal 
decision-making.  
 
For example, one of Polya's heuristics, "examining several consequences in succession," relates 
to legal decision-making with a Bayesian mindset. The main objective of this proposal is to 
measure the credibility of a certain conjecture A (i.e. "An accused is legally guilty") based on 
several pieces of the evidence (B1, B2, B3… of the conjecture A) presented at a criminal trial. 
Polya argues that the increment of the credibility of A always depends on the strength of the 
evidence B1, B2, B3, etc. In considering the process followed in examining consequences of 
possible actions or in testing the credibility of rival or conflicting conjectures (“Guilty" or "Not 
Guilty") in a criminal court case, the quantification of probabilities may provide a more explicit 
demonstration of the predictability of a particular outcome for students. 
     
1.2  Use of Bayes' Rule in Legal Decision-Making 
 
During an appearance on the television show, Good Morning America, Arthur Miller, the 
eminent lawyer and Harvard professor of law, wondered whether circumstantial evidence could 
be quantified to affect a jury’s final decision. Miller, of course, was not exactly serious. But his 
concern, in a broader sense, has been the subject of considerable research that has focused on 
developing mathematical models of the decision-making processes of juries (see, for example, 
Finkelstein and Fairley 1970; Gelfand and Solomon 1973, 1974, 1975; Thomas and Hogue 1976; 
Davis, Bray and Holt 1977; Boster, Hunter and Hale 1991). While most of these mathematical 
models have appeared since the 1970s, efforts to quantify jury decision-making extend back to 
the early nineteenth century. In the early 1800s, Poisson (1837) applied the theory of probability 
to data on French criminal and civil trials from 1825 through 1833. 
 
Mathematical models have been categorized in a variety of ways, including by their 
mathematical functions and goals (Penrod and Hastie 1979; Pennington and Hastie 1981). For 
example, information integration models describe how jurors process information in terms of an 
algebraic combination rule (Ostrom, Werner and Saks 1978; Boster, et al. 1991), while 
probabilistic models evaluate the effects of jury size on decisions by use of the binomial 
expansion. (Walbert 1971; Saks and Ostrom 1975). Bayesian models are special cases of 
probabilistic models. They also make use of binomial probabilities in evaluating decisions by 
jurors, but do so by treating them as conditional probabilities (Gelfand and Solomon 1975; 
Marshall and Wise 1975; Fienberg and Kadane 1983; Satake and Amato 1999).  
 
Bayesian methods are more readily accepted and more often utilized for data analysis when 
decision-making is at the forefront (Winkler 2001). Bayesian models designed to evaluate the 
decision-making process of jurors have been used in a variety of ways, including estimating the 
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prior probability that a defendant is guilty (Gelfand and Solomon 1973; Marshall and Wise 
1975), determining the probability of conviction by first ballot votes and jury size (Gelfand and 
Solomon 1974, 1975), and evaluating credibility (Schum 1975). For example, a model by 
Marshall and Wise accurately predicted the performance of 80.5% of the jurors in estimating the 
guilt of defendants (Marshall and Wise 1975). A Bayesian approach has also been used in 
testimony in such actual court cases as R ν. Adams, People v. Sally Clark, and People v. Collins, 
just to name a few. 
 
Finkelstein and Fairley stated in their article, entitled "A Bayesian Approach to Identification 
Evidence," that "guilt" is determined by an "accumulation of probabilities" (1970). One of the 
benefits of adopting a Bayesian mindset is that it gives a juror a mechanism for combining 
several pieces of the evidence presented in a trial. The Bayesian approach can be applied 
successively to all pieces of evidence presented in court, with the posterior from one stage 
becoming the prior for the next. This repetition of the process will minimize discrepancies 
among the jurors’ views about the defendant’s guilt and increase the confidence in the juror's 
belief about the status of the defendant's guilt. Also, Fienberg and Schervish stated: "Bayesian 
theory provides both a framework for quantifying uncertainty and methods for revising 
uncertainty measures in the light of acquired evidence” (Fienberg and Schervish 1986, p773). 
Importantly, however, Bayesian theory doesn’t purport to create uniformity of belief or direct a 
jury toward a particular verdict (Fienberg and Schervish 1986). The Bayesian method provides a 
formal way to measure the strength of the evidence and to generate the likelihood for an 
unknown event, such as the status of guilt. For this reason, the Bayesian method is often viewed 
as a calculus of evidence, not just a measurement of belief (Goodman 2005). 
 
1.3  Teaching Bayes' Rule in a Liberal Arts Statistics Course 
 
For students with limited perceived mathematical aptitude, concepts like significance level, 
power of a test, sampling distribution, and confidence interval have been difficult to understand 
fully and interpret correctly (Iversen 1984). The p-value is calculated on the assumption of the 
null hypothesis (Ho) being true. Therefore, the correct interpretation of the p-value is “the 
probability of obtaining a result as or more extreme than the observed result if the null 
hypothesis were true.” Thus, contrary to what many people believe, the p-value cannot measure 
the probability that the null hypothesis is true or false; mistakenly believing that the p-value can 
be interpreted in this manner uses deductive reasoning to answer inductive-natured questions. 
Conditional probability is needed to evaluate the likelihood of a hypothesis’ veracity.  
 
Rossman and Short (1995) pointed out that students who study classical statistics often have 
difficulties in distinguishing between P (A|B) and P (B|A) when they first learn the concepts of 
conditional probability, often believing that the two expressions are identical. Exposures to more 
relevant and stimulating examples of applied conditional probability can help students to clarify 
the underlying logic and interpretation and expand their knowledge of the subject matter 
(Rossman and Short 1995). Application to the law may be one such ideally relevant and 
stimulating example.  
 
Fienberg and Schervish (1986) stated that Bayesian reasoning is more direct at providing what is 
needed in the courtroom. “Even distinguished jurists” they noted, “regularly misinterpret p 
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values or significance levels reported in statistical testimony, treating them as if they supplied the 
probability of innocence itself” (p 778). Furthermore, Finkelstein, in his book Quantitative 
Methods in Law (1978), emphasized the usefulness and strength of Bayesian methods for legal 
decision-making: “Bayes’ theorem is in fact a relatively simple tool to help explain the results of 
the highly complicated and technical processes which lie behind the expert’s statement that the 
[DNA] trace is similar to a source associated with the accused, and that it appears with a certain 
frequency elsewhere,” (p 298). Haigh (2003) stated the following: “In a legal context, the prime 
application is: Knowing the probability of the evidence, given the suspect is Innocent, what is the 
probability the suspect is Innocent, given the evidence?” (p 305) 

 
Goodman also discussed the advantage of using the Bayesian approach over the traditional p-
value approach for legal decision-making (Goodman 2005). As we noted earlier, what we need 
to know in the end of the trial is the likelihood of the status of guilt based on the evidence that 
we observed. The p value does not calculate the probability that the defendant is guilty. Rather, it 
calculates the rarity of evidence on the presumption of guilt or innocence. On the other hand, 
using a Bayesian approach, we first calculate a likelihood ratio termed the Bayes’ Factor.  The 
Bayes’ Factor generates a ratio of the probabilities of two competing mutually exclusive events--
-guilt and innocence.  Such ratios are termed “the odds,” and simply provides a comparison of 
how strongly the evidence is supported by two competing hypotheses.  
 
Using Bayes’ Rule, we can also update our belief of guilt quantitatively as new evidence 
emerges. In short, the strength of the evidence clearly changes our view. As all evidence is 
presented and evaluated, we then multiply the final value of the Bayes’ Factor by the prior odds 
(the probability of “guilty” (denoted by G) to the probability of “not guilty” (denoted by NG) 
before we observe the actual evidence). We eventually obtain the posterior odds of “guilty” (G) 
to “not guilty” (NG)1 given all the evidence we observed. This particular ratio cannot be 
calculated by the p value. With its more general notion of uncertainty, the Bayesian approach is 
more natural, inductive, and the conclusions are easier to understand and interpret because of its 
directness. In this regard, Bayesian reasoning may also best provide what is needed for 
understanding the meanings and practical applications of troublesome statistical concepts in the 
classroom. 
 
The rapidly changing nature of contemporary courtroom evidence makes the need for 
understanding statistical reasoning all the more critical. In February of 2009, a congressionally 
mandated report from the National Research Council identified “serious problems” with the 
nation’s forensic science system and called for major reform in how forensic evidence is 
analyzed and reported (p xx of front matter). Our justice system is largely dependent upon the 
ability of forensic evidence to support conclusions about individualization (i.e. about the ability 
to match a piece of evidence to the unique qualities possessed by a particular person.)  In one 
recent study of court transcripts from wrongfully convicted exonerees (persons convicted of 
serious crimes and later exonerated by post-conviction DNA testing), 60% of these trials of 
innocent defendants involved invalid testimony by forensic analysts where conclusions  
misstated or were unsupported by empirical data (Garett and Neufeld 2009). The integrity of the 
criminal process is being called into question, providing a timely opportunity for addressing, in 

                                                 
1 In some instances ~G or ̅ܩ is utilized to indicate the complementary case.  In this paper we use NG to parallel the 
verbal definition “not guilty,” which may be more transparent for a lay audience. 
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the classroom, the assumptions made in forensic testimony and the impact that the 
communication of this information may have on the legal decision-making process. 
 
The teaching scenario introduced in this paper provides a platform for integrating recent 
scientific, statistical, and political discussions on the use of forensic evidence, creating a more 
interdisciplinary statistics course that also serves core learning objectives in the sciences. Critical 
analysis of the mathematics, statistics, and science that students encounter involves both 
weighing information against a content foundation that helps them know what questions to ask 
and processing information to develop and communicate an informed personal position or 
decision. The scenario provides an opportunity to challenge the students to use what they’ve 
learned about specific content from science courses (e.g., about human variation and DNA) or 
about evaluating scientific claims in general (e.g., how scientific testimony may be given and 
what assumptions are being made).  
 
The vast majority of students in introductory statistics classes are unlikely to become either 
statisticians or scientists. But, nearly all of them, at some point, will serve as members of a jury 
or will be required to make a similar type of informed decision that takes several pieces of 
evidence into account. Students at an intermediate level who have four years of high school 
mathematics courses should be comfortable with the basic algebraic manipulations used to 
discuss the calculation of Bayes’ Factor in the classroom. However, even in classes where the 
aim is not to have students directly apply Bayes’ Rule to draw a conclusion, they will have the 
opportunity to see and understand conceptually how and why the accumulation of evidence 
affects their opinions. At its most basic level, introducing the rationale behind Bayes’ Rule helps 
the students understand a general process and the philosophy behind the decision-making. As 
such, this is a teaching scenario widely applicable to any classroom where the teaching 
philosophy is aimed at preparing informed citizens. To help meet this objective, we introduce an 
approach to the teaching of Bayes’ Rule within the context of a hypothetical, yet realistic, legal 
scenario that may spur the interests of students. We use a step-by-step approach to demonstrate 
how Bayes’ Rule can be used to revise and update the probability of an event of interest as new 
information is introduced within the framework of the following scenario. 
 
2.  Relevance of Bayes’ Rule to a Hypothetical Legal Scenario 
 
2.1  Scenario 
 
The body of a 22-year-old woman is found stabbed to death in her Western Massachusetts home. 
There are signs of a struggle evident in the room and on the body, but there is no evidence of 
sexual assault. Bloodstains are found in the area surrounding where the body was discovered. 
 
Following interviews with the victim’s family and friends, investigators are without a major lead 
and are unable to suggest a motive for the crime. DNA is extracted from the skin cells found 
under the victim’s fingernails. The skin cells were presumably taken from the perpetrator during 
the struggle. A DNA search is done against the FBI’s CODIS database, and a match is found to a 
Caucasian male individual, who becomes the primary suspect. During the investigation, a knife 
of a style and size consistent with the victim’s injuries is found in a near-by dumpster and a 
partial fingerprint is lifted from the knife. 
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After the opening statements, the focus of the trial is to calculate the probability (i.e. the 
posterior probability) of the defendant’s guilt (G) based on the evidence presented at a trial (E). 
We can denote this probability perceived by the jurors by P (G|E). In this hypothetical legal 
scenario, we assume that the prosecution introduces three pieces of forensic evidence, denoted 
by E1, E2, and E3, as described below. The cumulative effect of the evidence and the 
mathematical derivations of the several probabilities pertaining to the defendant’s status of guilt 
are calculated using Bayes’ Rule. We follow this with a discussion of each of the results derived 
from the evidence. This teaching scenario is a simplification of the actual trial process in that we 
will not discuss and integrate the presentation of evidence by the defense.  
 
2.2  How to Determine the Posterior Probability and Posterior Odds of Guilt: Use of 
Bayes’ Rule  
 
The general formula for calculating the posterior probability of guilt, based on the introduction 
of new evidence (En) to a set of all previous pieces of evidence (denoted by 

H  I
i1

n1

Ei  is given by an equation originally developed by Lindley (1977). This equation was 

later modified by Fienberg and Schervish (1986), specifically for the calculation of guilt (G), 
based on H and En in a criminal trial, namely P(G | (En and H)). The formula is: 
 

P(G | (En and H)) = 
P G|H  P(E

n
| G  and H )

P G|H  P E
n
| G  and H    P NG|H  P(E

n
| NG  and H )

 

---Equation 1 
 
The formula and its mathematical derivation are provided in Appendix A. While mathematically 
inclined students may find this derivation intellectually stimulating, our intention with this 
teaching tool is not to quantify the exact prior probability P (G) mathematically. Instead, we 
intend to focus on demonstrating how the different values of P (G) will affect the posterior 

probability, denoted by  or P(G|(En and H)), by definition of conditional probability 

and how the result will be interpreted within the framework of our scenario.  
  
Finkelstein and Fairley (1970) describe the determination of guilt in a legal scenario as 
“accumulation of probabilities” (p. 497). Thus, to use a Bayesian approach for decision-making 
means that the posterior probability of a preceding outcome, say, for example, the posterior 
probability of guilt given the very first piece of evidence (E1), becomes the new prior probability 
of guilt before introduction of the second piece of evidence (E2). In short, the probabilities of 
subsequent outcomes are contingent on those that precede them; rational decision-making 
requires us to weigh and incorporate new evidence in a cumulative fashion. 
 
To illustrate this point further, let us suppose that we have already examined the first evidence 
E1. With incorporation of the second evidence E2, the probability of guilt, denoted by P (G| (E2 
and E1)), in Equation 2 is then expressed as follows: 
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---Equation 2 
 
In words, the numerator represents the probability of the joint occurrence of the first two pieces 
of evidence E1 and E2 that is equal to the product of two conditional probabilities, namely the 
probability of (G given E1) and the probability of the second evidence E2, conditional upon the 
occurrence of (G and E1). The probability of the second evidence E2 on the presumption of guilt 
(G) is considered as P (E2 | (G and E1), not P(E2 |G) alone because of the cumulative nature of 
the calculation of guilt (G) in a criminal court (Fienberg and Schervish 1986). 
 
Additionally, in a legal scenario, we often express the posterior probabilities of guilty G and NG 
in terms of the odds. The application of Bayes’ Rule leads to a simple relationship between the 
prior odds (before seeing the new evidence), the posterior odds (after seeing the new evidence), 
and the likelihood of guilt, or what is known as Bayes’ Factor. The Bayes Factor is a comparison 
of how credible the evidence is under the assumptions of “guilty” G and “not guilty” NG, i.e., a 
comparison of how well G and NG support the evidence. The assumption (G or NG) that better 
predicts the actual observed evidence is the one that is said to have more evidence supporting it. 
After we obtain the Bayes’ Factor, we can calculate the posterior odds of “guilty” (G) to “non 
guilty” (NG) based on the prior odds and the Bayes’ Factor. Posterior probability provides us 
with the likelihood that the defendant is guilty or is not guilty based on the evidence, while the 
posterior odds is a useful calculation to allow comparison of the two posterior probabilities; that 
is “how many times more likely” it is that the defendant is guilty. The formula is given as 
follows: 
 

P(G | (E
n
and H ))

P(NG | (E
n
and H ))

 P(G | H )

P(NG | H )


P(E
n

|  (G  and H ))

P(E
n

|  (NG and H ))

(Posterior Odds)  (Prior Odds)  (Bayes Factor)

 

---Equation 3 
 

In the Bayesian approach, a juror (or a judge) begins the trial with an initial assessment of the 
probability of guilt of the accused, denoted by P (G). In other words, P (G) is the probability that 
the accused is guilty prior to the presentation of the evidence (E). In Bayesian language, such a 
probability is called the prior probability, as noted earlier. One can update this assessment using 
either Equation 1 or Equation 2 as the new evidence emerges. At the end of the trial, the 
posterior probability of guilt, denoted by P (G|E), is used to draw a conclusion in response to all 
the evidence that was presented at the trial. 
 
2.3  Legal Interpretation of Prior Probability P (G) and Posterior Probability P(G | E) 

The prior probability P (G) may be interpreted as “presumption of innocence” (or “presumed 
innocence”) in legal terms. If it is taken to mean “there is no guilt before seeing the evidence,” 
then P (G) becomes zero. From a Bayesian point of view, if P (G) =0, then no evidence could 
make the accused guilty, i.e., the posterior probability P (G|E) is also zero. Therefore, P (G) must 
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exceed zero in the Bayesian analysis (Fienberg and Kadane 1983). In the legal scenario, the most 
influential factor of the prior probability could be a motive for the crime. In the absence of such a 
motive, the prior probability may be extremely low, so that only extraordinary evidence could 
make it possible for conviction (Goodman 2005).  
 
As we noted earlier, the posterior probability P (G | E) represents the final probability that a juror 
will find the defendant legally guilty after observing all the evidence presented at the trial. In 
other words, P (G | E) is a more general expression for P (G | (En and H)). If this probability 
exceeds the unspecified threshold probability value X, the juror confirms that all the evidence 
against the defendant shows “beyond a reasonable doubt.” It is also symbolically written as P (G 
| E)>X (Fienberg and Kadane 1983). 
 
These legal interpretations of statistical concepts provide an excellent point of engagement for 
student discussion that asserts the relevance of these concepts. Informal surveys about the 
quantification of “presumed innocence” and “beyond a reasonable doubt” given to a group of 77 
students enrolled in an introductory statistics class was used to shape the interpretations used for 
these concepts in this scenario. The results are summarized in Tables 1 and 2 shown below. 
 
 Table 1. Presumed Innocence 
 
Range for P (G) Frequency (n=77) Remark 
0% 0  
Between 0% and 10% 0  
Between 10% and 20% 5  
Between 20% and 30% 4  
Between 30% and 40% 4  
Between 40% and 50% 63 33 reported that it should be 

exactly 50% 
Greater than 50% 1  

 
Table 2. A Reasonable Doubt (X), where X represents the unspecified threshold probability 
value representing “A reasonable doubt.” 
Range for X Frequency (n=77) Remark 
100% 0  
Between 90% and 100% 60 43 reported that it should be 

at least 95% 
Between 80% and 90% 10  
Between 70% and 80% 7  
Between 60% and 70% 0  
Between 50% and 60% 0  
Less than 50% 0  

 
From student engagement in this scenario, it seems reasonable to set the prior probability at 0.5 
to suggest that the introduction of evidence may nudge a juror’s opinion in either direction 
toward ultimate guilt or innocence. Thus, presumption of innocence is reflected by a prior 
probability that exceeds 0 but is no higher than 0.5 (the metaphorical tipping point between 
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innocence and guilt). Also, it was intuitive to estimate the benchmark of “a reasonable doubt” as 
falling somewhere between 95% and 99% based on both authors’ and students’ subjective views. 
  
To reflect the range of differing preconceptions that might influence a juror’s presumption of 
innocence, we have subdivided a range of possible prior probabilities strictly greater than zero 
but no more than 0.5. These selected prior probabilities and their corresponding impact on 
posterior probability upon the introduction of different pieces of evidence are summarized in 
Table 3. For illustrative purposes, the following scenario focuses on the prosecutor’s case and 
includes the mathematical derivations of the posterior probability of the defendant’s guilt based 
on evidence introduced by the prosecution only. 
 
3.  The Case for the Prosecution  
 
3.1  Evidence E1- Forensic Serology Analysis (Blood Type Matching) 
 
The first piece of evidence presented by the prosecutor analyzes the bloodstains from the crime 
scene for biological indicators of ABO blood group. A and B antigens are substances found on 
the surfaces of red blood cells that are lifelong characteristics of individuals. Testing of the 
victim indicates that she has blood type A. Blood in one stain is found to lack any A or B 
antigens, suggesting that some of the blood at the crime scene came from an individual with 
blood type O. An expert testifies that the suspect also has blood type O, suggesting that he is not 
excluded from being a potential source of the stain. Forty-five percent of Caucasians in the 
population have blood type O (Garett and Neufeld 2009). Thus, the probability that both the non-
victim blood from the scene and the blood from the defendant would match, denoted by (P 
(E1|NG)), is equal to 0.45 even if the defendant were innocent. The probability of such a match if 
the defendant was indeed guilty, denoted by P (E1|G), is equal to 1 (assuming, of course, that 
there was no failure of the lab test to demonstrate this match, contamination of the sample, etc.).   
 
3.1.1 Calculation of Posterior Probability after Evidence 1 (E1) 
 
For illustration purposes, we will use P (G) =0.5 as the prior probability. Given that P (G)=0.5, P 
(NG)=1-0.5=0.5, P (E1|G)=1, and P (E1|NG)=0.45, the posterior probability of guilt after seeing 
E1, denoted by P (G|E1), and the Bayes’ Factor can be calculated as follows: 
 
By Bayes’ rule, we can obtain 

 

Bayes factor (BF) =   

Therefore, the posterior odds of “guilty (G)” to “not guilty (NG)” based on the first evidence E1 
become: 

 

1

1

(0.5) 1
P(G|E ) 0.69

(0.5) 1 (0.5) (0.45)

P(NG|E ) 1 0.69 0.31


 

  
  

1

1

P(E |G) 1
2.22.

P(E |NG) 0.45
 

1 1

1 1

P(G|E ) P(E | G)P(G)

P(NG|E ) P(NG) P(E | NG)
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After the presentation of the first piece of evidence, E1, the probability of the defendant being 
guilty has increased from 0.5 to 0.69 (Table 3). Equivalently, the Bayes’ Factor 

reveals that the credibility of E1 is 2.22 times greater under the 

assumption of guilty (G) than it is under the assumption of not guilty (NG). In other words, this 
shows that the defendant is 2.22 times more likely to be “guilty” than “not guilty,” after seeing 
the evidence E1. 
 
3.2  Evidence E2- Fingerprint Analysis 
 
After the presentation of the first evidence E1, the prosecutor then introduces testimony on 
fingerprint matching between a print obtained from the suspect and the partial print recovered 
from the murder weapon. Fingerprint analysis seeks to match distinguishing points in a print, or 
minutiae, and may also take other characteristic swirls of the fingerprint, or ridge data, into 
account. There are 16 distinguishing minutiae in the suspect’s print and only 4 are clear enough 
on the partial print to be matched. Testimony from one computational forensics model suggests 
that the random match probability of this scenario is 0.21 (Su and Srihari 2009). By this 
rationale, the probability that the partial print on the weapon and the suspect’s print would match 
at four minutiae, denoted by P (E2|(NG and E1)), is equal to 0.21 given that the defendant was 
innocent. The probability of such a match, denoted by P (E2|(G and E1)), is equal to 1 if the 
defendant was indeed guilty.  
 
3.2.1 Calculation of Posterior Probability after the Second Piece of Evidence (E2) 
 
Given that P (G|E1)=0.69, P (NG|E1)=0.31, P (E2|(G and E1))=1, and P (E2|(NG and E1))=0.21, 
the posterior probability of guilt after seeing E1 and E2, denoted by P (G|(E1 and E2)), and its 
Bayes’ Factor is given by: 

 

  
 

BF =  

 

  

  
Therefore, based on the presentation of the second piece of evidence E2 (evaluated along with 
E1), the probability of the defendant being guilty has increased from 0.69 to 0.914 (Table 3). The 
Bayes’ Factor reveals that the second evidence E2, along with E1, is 4.76 times (1/0.21=4.76) 

0.5 1 0.69
2.22(or simply 2.22)

0.5 0.45 0.31
   

1

1

P(E | G) 1
2.22

P(E | NG) 0.45
 

1 2

(0.69) 1
P(G|E  and E )

(0.69) 1 (0.31) (0.21)




  
0.914

1 2P(NG|E  and E ) 1 0.914 0.086  
2 1

2 1

P(E |(G and E ))  1
4.76.

P(E |(NG and E )) 0.21
 

1 2 1 2 1

1 2 1 2 1

P(G|(E  and E )) P(G|E ) P(E | G and E )

P(NG|(E  and E )) P(NG|E ) P(E | NG and E )
 

0.69 1

0.31 0.21
 

10.60
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more credible under the assumption of guilty (G) than it is under the assumption of NG. 
Consequently, the posterior odds also reveal that the defendant is 10.6 times more likely to be 
“guilty” than “not guilty” after seeing the evidence E1 and E2 in succession. 
 
3.3  Evidence E3- DNA Analysis 
 
Lastly, the prosecutor introduces expert testimony to discuss the DNA evidence that originally 
identified the defendant as a suspect. Forensic experts were able to analyze DNA extracted from 
cells found under the victim’s fingernails at 7 standard locations of repeating sequence 
throughout the genome, or STR (single tandem repeat) sites. Based on the frequency of particular 
repeat lengths in the population at each site, the random match probability taking all 7 STR sites 
into account would be on the order of 1 in 457 million (2.2E-9) (using, for example, the sample 
DNA profile from Butler 2005). However, because the match was not made by comparing one 
individual suspect identified for other reasons (such as motive or circumstance) to the crime 
scene sample, but by searching against the DNA of 8 million individuals housed in the FBI’s 
CODIS database, the random match probability must be adjusted to account for multiple 
comparisons. Multiplied by 8 million, the probability that the defendant’s DNA might match the 
DNA extracted from cells under the victim’s nails, denoted by P (E3|(NG and E1 and E2)), is 
equal to 0.017, given that the defendant was innocent. The probability of such a match, denoted 
by P (E3|(G and E1 and E2)), is equal to 1 if the defendant was indeed guilty.   
 
3.3.1  Calculation of Posterior Probability after Evidence 3 (E3)  
 
Given that P (G|(E1 and E2))=0.914, P (NG|(E1 and E2))=0.086, P (E3|(G and E1 and E2))=1, and 
P (E3|(NG and E1 and E2))=0.017, the posterior probability of guilt after seeing E1, E2, and E3, 
denoted by P (G|(E1 and E2 and E3)), and its Bayes’ Factor is calculated as follows: 

 

  
 

    
 

BF =  

 

 

  

 =   

                                              = 625.17 
 
Therefore, based on all three pieces of evidence, the probability of the defendant being guilty has 
increased from 0.914 to 0.998 (Table 3). Also, the posterior odds of “guilty” to “not guilty” have 
increased from 2.22 (E1) to 10.6 (E1 and E2) to 625.17 (E1 and E2 and E3). The Bayes’ Factor 
reveals that E3 (along with E1 and E2) is 58.82 times more credible under the assumption of G 

1 2 3
(0.914) 1

P(G|E  and E  and E ) = 
(0.914) 1+(0.086) (0.017)


 

0.998
1 2 3P(NG|(E  and E and E )) 1 0.998 0.002  

3 1 2

2 1 3

P(E |(G and E and E )) 1
58.82.

P(E |(NG and E and E )) 0.017
 

1 2 3 3 1 21 2

1 2 3 1 2 3 1 2

P(G|(E  and E  and E )) P(E | (G and E  and E ))P(G|(E  and E ))

P(NG|(E  and E  and E )) P(NG|(E  and E )) P(E | (NG and E  and E ))
 

0.914 1

0.086 0.017
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than it is under the assumption of NG ( =58.82). The final piece of evidence E3 (DNA 

match) had a strong impact on posterior odds. The defendant is now 625.17 times more likely to 
be “guilty” than “not guilty.”  A juror may regard these odds as appropriate enough for 
conviction and treat the defendant’s guilt “beyond a reasonable doubt.” 
 
Table 3. Posterior Probability Matrix  
 
Prior P (G) .0001 .001 .01 .05 .10 .25 .50 
        
        
After E1 .00022 .00222 .0220 .105 .198 .426 .690 
After E2 .00105 .0105 .0968 .358 .540 .779 .914 
After E3 .0582 .384 .863 .970 .986 .995 .998 
        
P (G|(∩En)) .0582 .384 .863 .970 .986 .995 .998 
        

 
 P (G|(∩En)) represents the final posterior probability, where the symbol ∩En  is read as (E1 and E2 

and E3) in our legal scenario. 
 P (E1|G)=P (E2|(G and E1))=P (E3|(G and E1 and E2))=1 
 P (E1|NG)=0.45,P (E2|(NG and E1))=0.21,P (E3|(NG and E1 and E2))=0.017 
 Bayes’ Factor: 2.22 (E1), 4.76 (E2), and 58.82 (E3) 

 
4.  Pedagogical Value  
 
We evaluated the impact of this teaching scenario by investigating student response to our case 
study, assessing student learning, and soliciting feedback on the approach from faculty who 
teach statistics. For evaluation of student interest and learning we worked with 88 students 
enrolled in 3 sections of an undergraduate Introductory Statistics course. Following a uniform 
introduction to conditional probability, students then spent the following two class meetings 
either learning Bayesian methods as presented in their class text (Peck et al. 2012) (“standard 
presentation group,” 1 section, 33 students), or via our legal scenario (“case study group,” two 
sections, 55 students). The same amount of class time was spent covering Bayes’ Rule in both 
cases and the same instructor taught each group. Students were randomly assigned to sections 
after having completed four years of high school mathematics at the time of their enrollment and 
a placement exam. All students are studying, or intend to study, one of seven fields whose 
majors require a statistics course (political science, psychology, sociology, nursing, criminal 
justice, education, or liberal arts). 
 
4.1  Student Response 
 
Following an introduction to conditional probability we gauged student interest in Bayesian 
analysis with a short questionnaire offering a Likert scale of responses (“Strongly agree” was 
coded as 5 and “Strongly disagree” was coded as 1) (Appendix B, items 7-10). Following either 
the standard presentation of Bayes’ Rule from the text or a presentation of our legal case study, 

1

0.017
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students repeated the questionnaire. While there was no significant difference between the pre-
presentation responses of the two groups, the post-presentation responses of the group exposed to 
the case study showed a significant increase in agreement (p<0.001 t-test) with all four 
statements that probed student interest in the material, engagement in class, and belief that the 
lesson had real-life applications, as compared to the standard presentation group (Figure 1 post 
vs. post and Appendix D2). Additionally, students who were exposed to Bayesian analysis 
through our case study demonstrated a significant increase in agreement with all four questions 
compared to their original survey responses (p<0.001, t-test), while there was no significant 
change in the responses of students in the “standard presentation” group (Figure 1 pre vs. post 
and Appendix D1). These data suggest that learning Bayesian analysis via our case study is 
associated with an increase in student interest in the example used, engagement with the class 
material, intrigue with the approach, and perception that Bayes’ Rule is applicable to real life 
situations compared to a standard textbook presentation.   
 
Figure 1. Student Response 

 
4.2.  Assessment of Student Learning 
 
Student learning was assessed using a set of six SALG (Student Assessment of Learning Gains) 
(Seymour, Wiese, Hunter and Daffinrud 2000) self-evaluation questions designed to reflect 
different types of learning (Blooms taxonomy) (Appendix B, items 1-6). The SALG 
questionnaire was administered after the initial one-class introduction to conditional probability, 
and then again after two classes of exposure to standard presentation of Bayesian analysis or two 
classes of exposure to our case study. Students reported increased confidence in all skills on the 
questionnaire after having spent two classes learning Bayes’ Rule from either approach 
(Appendix D3). However, students reported significantly more confidence in their ability to 
“interpret a result derived from Bayes’ Rule in words” if they were exposed to Bayes’ Rule 
through our case study, than if they were exposed through the standard presentation (p<0.05, t-
test, Figure 2a and Appendix D3 Q6). Additionally, students’ confidence in their ability to 
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“explain how the Bayesian method incorporates new evidence in a cumulative fashion” was 
significantly greater in the case study group as compared to the standard presentation (p<0.001, 
t-test, Figure 2a and Appendix D3 Q5). These data suggest that our teaching tool may offer a 
pedagogical advantage in instilling “higher order” synthesis and evaluation skills (i.e., 
“interpreting” and “explaining”). Of particular interest, these findings also support the claim that 
the case study is effective in communicating the cumulative nature of Bayesian analysis. This 
feature of Bayesian thinking has been highlighted as an advantage to teaching Bayesian analysis 
over traditional inferential methods and should be prioritized in the learning objectives and 
evidenced in the learning outcomes of approaches to teaching Bayesian analysis.  
 
Figure 2. Assessment of Learning 
 

 
Additionally, to serve as an objective metric of how the teaching scenario impacts and promotes 
student understanding, students in both the “case study group” and the “standard presentation” 
group completed a quiz at the end of the third class meeting (Appendix C). The quiz was 
designed to demonstrate the applicability of Bayes’ Rule to a variety of different contexts 
(medical, mass communication, and politics) utilizing examples from a range of high quality 
educational materials focused on Bayesian analysis (Satake, et al. 1995; Chase and Bown 2000; 
Albert and Rossman 2009). The three-item quiz was graded out of three points using a rubric that 
awarded partial points for setting up the equation correctly and selecting the appropriate numbers 
to use in the formula for Bayes’ Rule. Grading was performed blind as to whether students 
learned Bayes’ Rule from the case study or presentation of the text. The average quiz score of the 
case study group was more than 57% higher than the average quiz score of the standard 
presentation group (p=0.001, t-test, Figure 2b, and Appendix D4). This suggests that students 
who learned Bayes’ Rule from the case study were more successfully able to apply what they 
learned to other settings than those who learned though a traditional approach. 
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4.3. Faculty Feedback  
 
The case study approach was presented to a group of mathematics and statistics instructors at a 
local four-year state college who have taught statistics and/or biostatistics. These faculty pointed 
out the appeal of using a realistic scenario with parallels to criminal cases seen on TV (such as 
on Dateline, 20/20, etc.). Faculty appreciated the logic of using DNA evidence to engage 
students while also aiming to rectify common misconceptions about DNA forensic evidence. 
They commented that, in comparison to the standard approach, the case scenario highlights how 
Bayes’ Rule works in a cumulative, not a terminal, way. “We can see how largely the various 
different prior probabilities influence their posterior probabilities,” said one faculty member, 
while another faculty member commented on how the case clearly illustrated the usefulness of 
Bayes’ Rule in calculating the posterior probability of a complex problem. The complexity of the 
type of problem to which Bayes’ Rule is applied was a source of criticism from one faculty 
member, who rejected the underlying premise that Bayesian analysis ought to be approached in 
an introductory statistics course. While the teaching scenario positively impacted student 
learning by both metrics above, we acknowledge that even the improved student understanding 
was not at an ideal level on this topic. We attribute these findings in part to the fact that Bayes’ 
Rule is a complex topic and that the three class meetings utilized for this study are not enough to 
reasonably expect its mastery. All mathematics and statistics faculty members who were open to 
teaching Bayesian thinking at an introductory level, were enthusiastic about an approach that 
sought to connect to real life examples and make the approach relevant. “It is intellectually 
challenging and stimulating in every aspect,” concluded one faculty member.  
 
5. Conclusion 
 
Despite the fact that the discipline of statistics remains healthy, Moore (1997) has opined that its 
place in academe is not. In relation to Moore’s comment on undergraduate statistics curriculum, 
Bolstad (2002) suggested that Bayesian methods may be the key to revitalizing our 
undergraduate programs in statistics. Additionally, Albert, Berry, Rossman, and others 
encourage instructors to implement Bayesian thinking into the elementary statistical inference 
and decision-making process (Albert 1995; Berry 1996; Albert and Rossman 2009). However, in 
most universities and colleges, exposure to Bayesian statistics in the current undergraduate 
statistics curriculum is very limited.  
 
Winkler (2001) gave a detailed list of the recommendations on “how to promote Bayesian 
methods in basic courses.” He suggested that more materials should be developed for Bayesian 
training in basic courses, including more basic texts written for a Bayesian perspective (e.g., 
Berry 1996; Albert and Rossman 2009) and easier-to-use Bayesian software for students and 
practitioners (e.g., Albert 1996). He also emphasized the importance of “training the trainers” to 
increase the awareness of the importance and practical applications of Bayesian methods at the 
introductory and intermediate levels. He suggested that instructors of basic statistics courses 
must understand the fundamentals of Bayesian methods first to teach the material most 
effectively. The present work responds to the latter of these recommendations by demonstrating 
the teaching scenario to the instructors of mathematics and statistics and engaging this group in 
dialogue about the approach. 
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The teaching scenario illustrated in this paper is intended to be complementary to existing 
strategies for teaching Bayesian thinking that aim to make Bayes’ Rule relevant and accessible. 
For example, the innovative work of Albert and Rossman’s Workshop textbook also uses a 
courtroom forensics example in Activity 15/15 (Albert and Rossman 2009). This teaching 
scenario utilizes the engaging courtroom context to highlight the cumulative nature of Bayes’ 
Rule by introducing several rounds of evidence of increasing strength. It also includes an 
empirical assessment of effectiveness that supports its success in highlighting this aspect of 
Bayes’ Rule and its positive impact on student engagement and learning in comparison to a 
standard textbook treatment. 
 
This approach also represents a teaching-focused illustration of the application of Bayes’ Rule to 
evaluating guilt or innocence in a court case. This application of Bayes’ Rule was noted in the 
1983 work of Fienberg and Kadane. We adapt Fienberg and Kadane’s observations to the 
classroom and evaluate student learning quantitatively. Further, our work updates and expands 
upon such work by integrating modern forensic evidence, including DNA analysis. 
 
Even as DNA analysis has been held up as the gold standard for rigorous and consistent support 
of conclusions about individualization, there are numerous ways that DNA evidence can be and 
has been misused (Murphy 2009). The perceived infallibility of DNA evidence extends beyond 
the courtroom and becomes an idea entrenched in both academic circles and popular culture 
(Thompson 2006). A troubling effect of such attitudes may be a failure to question any DNA-
based information, whether it is delivered to someone as a juror, or as a consumer of the media, 
or as a patient in a medical situation. The teaching scenario illustrated here provides a crucial 
opportunity for impacting such societal misconceptions by discussing the nature of the DNA 
evidence presented. Students can be guided to explore the mathematical arguments utilized to 
determine the particular prior probability used for the DNA evidence and discuss how different 
handling of the DNA evidence or testimony would affect this value. They can determine the 
important questions to ask for critical evaluation of DNA information and gain an appreciation 
for how a lack of awareness about such factors could lead to misuses or misunderstandings about 
the meaning of statistical arguments commonly made about the uniqueness of DNA in the 
courtroom and in other contexts. 
 
Lastly, the scenario also showed us that probabilities of guilt fluctuate to a smaller or larger 
extent, contingent upon the strength of evidence. This means, as the strength of the evidence 
increases for the defendant’s status of guilt, the data are more able to convert a skeptic into a 
believer of the claim “the defendant is guilty.” Furthermore, the manner in which the posterior 
probabilities of guilt are determined appears to favor a Bayesian rather than a classical statistics 
approach. In classical statistics, each event is treated independently with a p-value and/or α value 
to determine its statistical significance. The methodology used in classical statistics is not 
designed to consider and further calculate influencing factors that precede an event. Bayesian 
statistical methods, on the other hand, are designed to determine and evaluate phenomena by 
revising and updating probabilities in light of current and prior events (Satake 1994). Regardless 
of the debate as to what approach to take in legal decision-making processes, the teaching of 
Bayes’ Rule within a course in introductory statistics has much to offer, particularly in light of 
the growing interest in Bayesian statistics as a research instrument in a wide range of disciplines 
and professions, especially those involved in and closely related to decision-making processes. 
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Such applications have made many statistics educators aware that the Bayesian perspective 
should be emphasized more in introductory statistics courses to help students develop both 
deductive (general to specific) and inductive (specific to general) statistical reasoning, which are 
the essential components of statistical inference. The Bayesian perspective can also deepen 
students’ general knowledge about the subject matter of probability and statistical inference. 
 
 

Appendix A 
 
Mathematical derivation of Bayes Rule: 
 
	

ܲሺܩ	|	ሺ݊ܧ	݀݊ܽ	ܪሻሻ 	ൌ
ܲሺܪ|ܩሻ	ܲሺܧ|ሺܩ	݀݊ܽ	ܪሻሻ

ܲሺܪ|ܩሻ	ܲ൫ܧหሺܩ	݀݊ܽ	ܪሻ൯  	ܲሺܰܪ|ܩሻ	ܲሺܧ|ሺܰܩ	݀݊ܽ	ܪሻሻ
	

---Equation A1 

		ܲሾܩ	|	ሺ݊ܧ	݀݊ܽ	ܪሻሿ ൌ
ܲሺܩ	݀݊ܽ	ܧ	ܽ݊݀	ܪሻ

ܲሺܧ	ܽ݊݀	ܪሻ
	

	ሺby	Conditional	Probability	Formula	and	Bayes’	ruleሻ 
	 	

ൌ
ܲሾሺܧሻ	ܽ݊݀	ሺܩ	݀݊ܽ	ܪሻሿ

ܲሺܧ	ܽ݊݀	ܪሻ
	

	 	

ൌ
ܲሾܧ|ሺܩ	݀݊ܽ	ܪሻሿ	ܲሺܩ	݀݊ܽ	ܪሻ

ܲሺܧ|ܪሻܲሺܪሻ
	

|	ሺsince	ܲሺܣ	݀݊ܽ	ܤሻ 	ൌ 	ܲሺܤ|ܣሻ	ܲሺܤሻ	this	rule	applies	to	both	numerator	and	denominator	hereሻ	
	 	

	ൌ
ܲሾܧ|ሺܩ	݀݊ܽ	ܪሻሿܲሺܪ|ܩሻܲሺܪሻ

ܲሺܧ|ܪሻ	ܲሺܪሻ
	

ሺby	the	same	token,	ܲሺܩ	݀݊ܽ	ܪሻ 	ൌ 	ܲሺܪ|ܩሻ		ܲሺܪሻሻ	
	 		

ൌ
ܲሾܧ|ሺܩ	݀݊ܽ	ܪሻሿܲሺܪ|ܩሻ

ܲሺܧ|ܪሻ
	

---Equation A2 

	 	
Now, let us rewrite the denominator of Equation A2, ܲሺܪ|݊ܧሻ	in another form. 
	

ܲ	ሺ݊ܧ	|	ܪሻ 	ൌ 	
ܲሺܧ	ܽ݊݀	ܪሻ

ܲሺܪሻ
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	ܲሾܧ	ܽ݊݀	ሺܪ	݀݊ܽ	ܩሻሿ  ܲሾሺܧሻ	ܽ݊݀	ሺܪ	݀݊ܽ	ܩܰሻሿ

ܲሺܪሻ
 

 
since 
 
ܲሺܪሻ 	ൌ 	ܲሺܪ	݀݊ܽ	ܩሻ 	 	ܲሺܪ	݀݊ܽ	ܩܰሻሻ 

 

ൌ	
ܲሾܧ|ሺܪ	݀݊ܽ	ܩሻሿܲሺܪ	݀݊ܽ	ܩሻ  ܲሾܧ|ሺܪ	݀݊ܽ	ܩܰሻሿܲሺܪ	݀݊ܽ	ܩܰሻ

ܲሺܪሻ
 

 ሺby Conditional Probability Formula and Bayes’ rule)  

 

ൌ
ܲሾܧ|ሺܪ	݀݊ܽ	ܩሻሿܲሺܪ|ܩሻܲሺܪሻ  ܲሾܧ|ሺܪ	݀݊ܽ	ܩܰሻሿܲሺܰܪ|ܩሻ	ܲሺܪሻ

ܲሺܪሻ
	

ሺby Conditional Probability Formula and Bayes’ rule) 

 
This equation above is simplified to 
 

ܲሾܧ|ሺܪ	݀݊ܽ	ܩሻሿ	ܲሺܪ|ܩሻ  ܲሾܧ|ሺܪ	݀݊ܽ	ܩܰሻሿ	ܲሺܰܪ|ܩሻ 

---Equation A3 
 
Substituting Equation A3 into the denominator part of Equation A2, we then obtain the following 
equation, as shown below. 

ܲ	ሾܩ	|	ሺ݊ܧ	݀݊ܽ	ܪሻሿ 	ൌ
ܲሾܧ|	ሺܩ	݀݊ܽ	ܪሻሿܲሺܪ|ܩሻ

ܲሾܧ|ሺܩ	݀݊ܽ	ܪሻሿ	ܲሺܪ|ܩሻ  ܲሾܧ|ሺܰܩ	݀݊ܽ	ܪሻሿ	ܲሺܰܪ|ܩሻ
	

 
Reordering H, G, and NG, we finally obtain the equation as follows. 

ൌ
ܲሺܪ|ܩሻ	ܲሺܧ|ሺܩ	݀݊ܽ	ܪሻሻ

ܲሺܪ|ܩሻ	ܲ൫ܧหሺܩ	݀݊ܽ	ܪሻ൯  	ܲሺܰܪ|ܩሻ	ܲሺܧ|ሺܰܩ	݀݊ܽ	ܪሻሻ
	

ሺEquation	A1ሻ	

 
That is exactly equal to Equation A1, as shown above. 
 
Where  

 
 G = “the accused (or the defendant) in a criminal trial is ‘legally’ guilty.” 
 NG = “the accused is not ‘legally’ guilty.” 
 En= the new piece of evidence, i.e., the nth evidence. 



Journal of Statistics Education, Volume 22, Number 1 (2014) 

 20

 H = all of the evidence presented up to a certain point (prior to the presentation of the 
new evidence) in the trial. H is also symbolically expressed as follows: 

H = ൛⋂ ܧ
ିଵ
ୀଵ ൟ ൌ 	 ሼܧଵܽ݊݀	ܧଶ	ܽ݊݀  ିଵሽܧ…

 

 ܲ	ሺܪ|ܩሻ ൌ	 the probability of G, given the evidence H. This probability is termed as the 
prior probability (at a point H is already presented) in the Bayesian language.  

 ܲ	൫݊ܧหሺܩ	݀݊ܽ	ܪሻ൯ ൌ		the	probability	that	measures	the	credibility	of	the	evidence	En	
based	on	 the	presumption	of	guilty	and	 the	evidence	H.	 	 In	 forensic	evidence,	 this	
credibility	is	intimately	related	to	the	rarity	of	a	particular	piece	of	evidence.		

 ܲ	ሺܰܪ|ܩሻ ൌ	the	probability	of	innocence	ሺ“legally”	not	guiltyሻ,	given	the	evidence	H.	
It	is	also	calculated	by		1 െ 	ܲ	ሺܪ|ܩሻ	

 ܲ	൫݊ܧหሺܰܩ	݀݊ܽ	ܪሻ൯ ൌ the probability that measures the credibility of the evidence En 
based on the presumption of innocence and the evidence H. It is also calculated by      1 െ
	ܲ	ሺ݊ܧ|ሺܩ	݀݊ܽ	ܪሻሻ 

 ܲ	൫ܩหሺ݊ܧ	݀݊ܽ	ܪሻ൯ ൌ the probability of G given all evidence up to and including En. This 
probability is termed as the posterior probability (at a point H and En are already presented) 
in the Bayesian language. 

 
 

Appendix	B	
Presentation	of	conditional	probability;	Student	Survey	1	

	
Please	circle	the	one	response	for	each	question	that	best	represents	your	
confidence	level	with	the	skill	indicated.		
	
Presently	I	am	confident	I	can…	
1.	…	distinguish	between	the	meaning	of	“the	probability	of	A	given	B”	and	the	“probability	
of	B	given	A”.	

a.	Extremely	confident							b.	Highly	confident							c.	Somewhat	confident							d.	A	little	confident							e.	Not	
confident	

2.	…	identify	a	practical	situation	in	which	Bayesian	thinking	would	be	useful.	
a.	Extremely	confident							b.	Highly	confident							c.	Somewhat	confident							d.	A	little	confident							e.	Not	

confident	

3.	…apply	Bayes	Rule	to	questions	in	my	discipline	of	study.	
a.	Extremely	confident							b.	Highly	confident							c.	Somewhat	confident							d.	A	little	confident							e.	Not	

confident	

4.	…relate	my	decision‐making	process	to	Bayesian	probability.		
a.	Extremely	confident							b.	Highly	confident							c.	Somewhat	confident							d.	A	little	confident							e.	Not	

confident	
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5.	…explain	how	the	Bayesian	Method	incorporates	new	evidence	in	a	cumulative	fashion.	
a.	Extremely	confident							b.	Highly	confident							c.	Somewhat	confident							d.	A	little	confident							e.	Not	

confident	

6.	…	interpret	a	result	derived	from	Bayes	Rule	in	words.	
a.	Extremely	confident							b.	Highly	confident							c.	Somewhat	confident							d.	A	little	confident							e.	Not	

confident	

Please	circle	the	one	response	for	each	question	that	best	represents	your	
agreement	with	the	statement.	
	
7.		The	example(s)	used	to	teach	Bayes	rule	were	interesting.	
					a.	Strongly	agree																			b.	Agree																				c.	Neutral																				d.	Disagree																				e.	Strongly	disagree	

8.		I	found	myself	engaged	in	the	content	of	the	material	in	class	today.	
					a.	Strongly	agree																			b.	Agree																				c.	Neutral																				d.	Disagree																				e.	Strongly	disagree	

9.		Bayesian	Analysis	is	an	intriguing	way	to	approach	conditional	probability.	
					a.	Strongly	agree																			b.	Agree																				c.	Neutral																				d.	Disagree																				e.	Strongly	disagree	

10.		Bayes	Rule	is	applicable	to	real‐life	situations.	
					a.	Strongly	agree																			b.	Agree																				c.	Neutral																				d.	Disagree																				e.	Strongly	disagree	

	

Appendix C 
Quiz 

 
1. (An Application to Medical Sciences): Suppose that 2% of the people in a town have a 

particular type of disease. A screening test designed for detecting the disease has been 
developed and it has the following properties; (1) If a person has the disease, the test will 
detect it (it gives a positive result) with probability of 99%, and (2) If the person does not 
have the disease, the test will indicate the disease (it gives a positive result) with 
probability of 0.5%. If the test indicates a person has the disease, what is the probability 
that the person actually has the disease? 

2. (An Application to Mass Communication): A local television station has three video tape 
players for recording network news satellite transmissions. Recorder A is used 60% of 
the time; recorder B is used 30% of the time; and recorder C is used 10% of the time. Past 
experience shows that the probability that the recorders will fail to record properly are 
5%, 8%, and 9%, respectively. In preparation for the evening newscast, a taped network 
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segment is found to have been improperly recorded. The news director does not know 
what recorder had been used to record that segment. What is the probability that the 
recording was made on recorder B? 

3. (An Application to Politics): Suppose that you are shopping in a large mall in a 
metropolitan area. The people who shop at this mall live either downtown or in the 
suburbs. Recently a market research firm surveyed mall shoppers, and from this survey 
they believe that 70% of the shoppers live in the suburbs and 30% live downtown. 
Furthermore, you learn that there is a relationship between political affiliation and where 
a person lives. Statistics shows that 40% of the adults who live in the suburbs are 
registered Democrats and 80% of the downtown residents are also registered Democrats. 
Suppose that you ask the person his political affiliation and he tells you that he’s 
Democrat. What is the probability that he lives in the suburbs? 

 
(Sources): Question 1: (General Statistics, 4th ed., by W. Chase & F. Bown, Wiley 2000) 
Question 2: (“Using an n x m Contingency Table to Determine Bayesian Probabilities: An 
Alternative Strategy, by E. Satake, W.Gilligan, & P.Amato, The AMATYC Review, 16, 2, 34-
43, 1995) 
Question 3: (Workshop Statistics: Discovery With Data, A Bayesian Approach, by J. Albert & 
A. Rossman, Key College Publishing, 2009) 
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Appendix D 
 
Table D.1. Descriptive Statistics and Mean Difference between Pre-survey and Post-survey 
of Standard and Case Study Groups 
 

 
 

 

  Standard  Case
Study 

 

 PRE  POST P 
value 

PRE POST  P 
value 

 Mean SD Mean SD PRE
vs 
POST 

Mean SD Mean SD PRE
vs 
POST 

Q1 1.758 0.708 2.303 1.104 <0.001 1.764 0.769 2.673 1.218 <0.001

Q2 1.727 0.574 2.212 1.053 <0.001 1.836 0.660 2.382 1.063 <0.001

Q3 1.242 0.435 1.727 0.719 <0.001 1.382 0.733 1.945 0.989 <0.001

Q4 1.091 0.292 1.667 0.890 <0.001 1.164 0.536 1.964 0.981 <0.001

Q5 1.458 0.712 1.758 0.902 0.002 1.455 0.765 2.600 1.116 <0.001

Q6 1.394 0.659 1.788 0.927 <0.001 1.491 0.814 2.182 0.884 <0.001

Q7 2.394 0.659 2.455 0.666 0.160 2.636 0.802 3.709 0.762 <0.001

Q8 2.939 0.659 3.030 0.394 0.184 2.782 0.896 4.036 0.793 <0.001

Q9 2.939 0.496 2.939 0.659 1.000 2.655 0.865 3.618 0.805 <0.001

Q10 3.091 0.678 3.152 0.619 0.423 3.000 0.923 4.000 0.861 <0.001
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Table D.2. Student Attitudes on Presentation of Bayes’ Rule: Comparison of Post-survey 
Scores on Questions 7-10 between Standard and Case Study Groups 
 
 Standard Case Study 95% CI for the 

mean difference 
P value for the 
mean difference 

     
 Mean Mean   
Q7 2.455 3.709 (-1.573, -0.936) <0.001 

Q8 3.030 4.036 (-1.300, -0.712) <0.001 

Q9 2.939 3.618 (-1.009, -0.349) <0.001 

Q10 3.152 4.000 (-1.190, -0.507) <0.001 

Equal variances were confirmed by Bartlett’s and Levene’s F tests. 
 
 
Table D.3. Student Assessment of Learning Gains: Comparison of Post-survey Scores on 
Questions 1-6 between Standard and Case Study Groups 
 
 Standard Case Study 95% CI for the 

mean difference 
P value for the 
mean difference 

     
 Mean Mean   

Q1 2.300 2.670 (-0.885, 0.145) 0.157 

Q2 2.210 2.380 (-0.633, 0.294) 0.469 

Q3 1.727 1.945 (-0.611, 0.175) 0.273 

Q4 1.667 1.964 (-0.712, 0.118) 0.158 

Q5 1.758 2.600 (-1.298, -0.389) 0.000 

Q6 1.788 2.182 (-0.788, 0.000) 0.049 

Equal variances were confirmed by Bartlett’s and Levene’s F tests. 
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Table D.4.  Distribution of Quiz Scores 
 

 
Table D.5 Comparison of Quiz Scores 

 
  

 Standard  Case Study 95% CI 
for the 
mean 
difference 

P value 
for the 
mean 
difference 

n 33  55  

Mean 1.091  1.691 (-0.947, -
0.253) 

0.001 

SD 0.701  0.842  

Equal variances were confirmed by Bartlett’s and Levene’s F tests. 

 

Quiz Scores  Standard
(n=33) 

% Case Study 
(n=55) 

% 

0  8 24.24 3 5.45

0.5  0 0 4 7.27

1.0  8 24.24 11 20 

1.5  12 36.36 10 18.18

2.0  5 15.15 12 21.81

2.5  0 0 8 14.55

3.0  0 0 7 12.73
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