Clostridioides difficile and Fecal Microbial Transplantation
Lynda Britton, Ph.D. MLS(ASCP)CM
lbritt1@lsuhsc.edu

Objectives
1. Describe Clostridioides difficile infections, laboratory tests for identification and the toxins contributing to it.
2. Discuss treatments, prevention and control.
3. Describe the procedures, indications and testing required for fecal microbial transplantation.

C. difficile Infection (CDI)
- Leading cause of hospital- and antibiotic-associated diarrhea globally
- > 500,000 infections each year in US hospitals
- > 29,000 deaths annually
- 2-5 excess hospital days
- 1% hospital admissions
- Costs the US ~$1.2-$5.9 billion a year
- Incidence—↑200% 1999-2011
- > double this decade

C. difficile Infection (CDI)
- Risk of recurrence within 8 weeks 15–25%
- Rises to 40–65% in patients with multiple recurrences
- Most common nosocomial pathogen
- >65 y.o. 26 times risk

CDI
- Anaerobic gram positive sporeformer
- Disruption of the intestinal microbiota, colonization with the C. difficile and release of its two toxins; Toxin A (TcdA) and (TcdB)

Pathogenesis
C. difficile Toxins
- Toxin A (TcdA) and Toxin B (TcdB)—Rho glucosyltransferases that irreversibly inactivate GTPases causing cell death
 - Massive fluid secretion
 - Colonic tissue necrosis
 - Inflammation
- CDT binary toxin—30% of hypervirulent strains—increased 30-d mortality independent of ribotype—inactivation of actin and microtubules increasing adherence to target cells
 - Hypervirulent BI/NAP/027 strain

Spectrum of CDI

Pseudomembranous Colitis

Carriers 5: 1 CDI Patients
- Symptomatic C. difficile patient
- Asymptomatic C. difficile patient
- 80-90% Diarrhea non-infectious causes

Most Diarrhea Noninfectious

<table>
<thead>
<tr>
<th>Condition</th>
<th>Patients on antibiotics</th>
<th>ICU patients</th>
<th>Solid Organ Transplant patients</th>
<th>Onco/HSCT patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of diarrhea</td>
<td>5-25%</td>
<td>15-40%</td>
<td>10-20%</td>
<td>50-80%</td>
</tr>
<tr>
<td>Percent of total diarrhea</td>
<td>10-20%</td>
<td>10-20%</td>
<td>>20%</td>
<td>6-20%</td>
</tr>
<tr>
<td>Percent of total diarrhea</td>
<td>10-20%</td>
<td>10-20%</td>
<td>5-10%</td>
<td>6-13%</td>
</tr>
<tr>
<td>Percent of total diarrhea</td>
<td>3-8%</td>
<td>unknown</td>
<td>5-10%</td>
<td>5-10%</td>
</tr>
<tr>
<td>Percent of diarrhea due to</td>
<td>80-90%</td>
<td>80-90%</td>
<td>100%</td>
<td>80-95%</td>
</tr>
</tbody>
</table>

Postage et al. CID 2012
CDI
- Mild to severe diarrhea
- Pseudomembranous colitis—30% develop
- 25% to 30% of antibiotic-associated diarrhea
- 15-25% healthcare associated diarrhea
- >95% of pseudomembranous colitis cases

Typical Symptoms
- Mild to moderate watery diarrhea rarely bloody
- Cramping abdominal pain
- Anorexia
- Malaise
- Fever especially severe cases
- Dehydration
- Abdominal tenderness

SHEA-IDSA CDI Classification Guidelines
- Community associated (CA)
- Healthcare facility onset (HFO)—cases per 10000 pt days
- Community onset with exposure to healthcare facilities in last 4 weeks (CO)—cases per 1000 admissions
 - Day surgery
 - Dialysis
 - Chemotherapy suites
 - Long-term care facilities

Risk Factors for HFO
- Length of stay, roommate
- Multiple classes of antimicrobials
 - Beta-lactam with beta-lactamase inhibitors (OR = 3.65; P < .001)
 - First-generation cephalosporins (OR = 2.38; P = .03)
 - Carbapenems (OR = 2.44; P = .03)
- Opioid use
- Cirrhosis
- Age >60

More CDI Risk Factors
- Inflammatory bowel disease (IBD)
- Similar disruptions to the intestinal microbiome found in IBD and in obesity
- Of 132 patients, 43% had community onset, 30% had health care facility onset, and 23% had community onset after exposure to a health care facility
- Community onset had > BMIs

Risk in Pediatric Patients
- Prior antimicrobial use 2X
 - Carbapenems
 - Aminoglycosides and cephalosporins
 - PPI—3X

Infect Control & Hosp Epi. 40(4):420-6. 2019
https://doi.org/10.1017/ice.2019.23
Distribution in China
- 3699 healthy Chinese over 1 year
- 25% < 1 year—20% toxin forming genes
- 13.6% of children
- 6.3% of healthcare workers
- 5.5% healthy adults—65% toxin
- Susceptible to all but ciprofloxacin (98.3% resistant)

Molecular Characterization of Australian Affected Isolates from Human Subjects and the Environment (2016) PLOS.org
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151964

Resistance to Colonization
- Intestinal microbiota
- Convert bile acids to secondary bile acids
- Inhibit grow by depriving important germinant
- Increasing concentration toxic to vegetative form

Recommended Laboratory Tests
- CBC-leukocytosis may be high
- Electrolytes, creatinine
- Albumin—low
- Lactate->5 mmol.L
- Stool positive for blood but not grossly bloody; fecal leukocytes in half

ASM Testing Guideline
- ≥3 episodes of non-formed stool within 24 hours or 6 in 48 hours
- Adults: Recent or current antibiotic use
- Unexplained and new onset diarrhea
- Children ages 1 to 3 with diarrhea, consider viruses first
- No routine testing in children <1 (high carriage rates)
- Children >3 same as for adults

Do Not Test
- On asymptomatic patients, unless it’s for use in an epidemiological study
- Repeat tests during the same episode of diarrhea that takes place within a week’s time
- Do not test for cure

CDI Laboratory Tests
- Culture: Performed for research to ensure viable organisms
- Toxigenic culture & cell cytotoxicity—reference methods
- Glutamate dehydrogenase (GDH) EIA
 - Very sensitive but not specific
 - Rules out CDI
 - Must be confirmed
 - Can be automated and gives numerical result
- C. Diff Toxin EIA—enzyme immunoassay for toxin A & B—not as sensitive as NAAT
Examples of Toxin Tests

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott (TechLab) Tox A/B Quik Chek</td>
<td>EIA</td>
</tr>
<tr>
<td>Abbott C. difficile Tox A/B II</td>
<td>EIA</td>
</tr>
<tr>
<td>Abbott C. difficile Tox B Test</td>
<td>CCEA</td>
</tr>
<tr>
<td>Meridian Toxins A/B EIA</td>
<td>EIA</td>
</tr>
<tr>
<td>Meridian Immunocard Toxins A/B</td>
<td>EIA</td>
</tr>
<tr>
<td>Remel Spect C.diff Toxin A/B</td>
<td>EIA</td>
</tr>
</tbody>
</table>

Laboratory Tests

- **NAAT**
 - Presence of ribotype O27 strain
 - Highly sensitive but false positives
 - Overdiagnosed due to colonization, presence of genes but not producing toxin
 - Add toxin test to improve specificity

FDA Approved PCR Assays (Not Complete)

<table>
<thead>
<tr>
<th>Assay</th>
<th>Target Gene</th>
<th>Instrument</th>
<th>Time (minutes)</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Substance Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD Gene-Ohm</td>
<td>toxR</td>
<td>Smart Cycler and Amplification or new Automated Version</td>
<td>79-120</td>
<td>High</td>
<td>Low</td>
<td>Vegetative cells or spores</td>
</tr>
<tr>
<td>Gen-Probe (Hologic) prodA</td>
<td>toxB</td>
<td>Extrachip Smart Cycler Jamp</td>
<td>180-200</td>
<td>High</td>
<td>Low</td>
<td>Toxin genes</td>
</tr>
<tr>
<td>Cepheid Xpert</td>
<td>toxB</td>
<td>GeneXpert</td>
<td>30-45</td>
<td>High</td>
<td>Low</td>
<td>Common antigen</td>
</tr>
<tr>
<td>Great Basin Portrait</td>
<td>toxB</td>
<td>Incubator</td>
<td>90</td>
<td>High</td>
<td>High</td>
<td>Free toxins</td>
</tr>
<tr>
<td>Focuscix Simplex</td>
<td>toxB</td>
<td>3H Integrated Cycler</td>
<td>60-90</td>
<td>Low</td>
<td>Moderate</td>
<td>Free toxins</td>
</tr>
</tbody>
</table>

Available Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Sub stance Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxigenic culture</td>
<td>High</td>
<td>Low</td>
<td>Vegetative cells or spores</td>
</tr>
<tr>
<td>NAAT</td>
<td>High</td>
<td>Low - moderate</td>
<td>Toxin genes</td>
</tr>
<tr>
<td>GDH</td>
<td>High</td>
<td>Low</td>
<td>Common antigen</td>
</tr>
<tr>
<td>Cell culture toxicity neutralization</td>
<td>High</td>
<td>High</td>
<td>Free toxins</td>
</tr>
<tr>
<td>Toxin A, B EIA</td>
<td>Low</td>
<td>Moderate</td>
<td>Free toxins</td>
</tr>
</tbody>
</table>
IDSA Guidelines

Figure: Test Code 91664 Testing Algorithm

- GIH and toxin positive
- GIH and toxin negative
- GDH Screen
 - No further testing
 - Potentially Positive
 - Toxin EIA
 - Negative
 - Positive
 - Consider NAAT
 - Treat

GEDH Screen
- GDH and toxin positive
- GDH and toxin negative
- Toxin sensitive
 - 90.5%
 - Specificity 93%
- Toxin insensitive
 - 93.4%
 - Specificity 90.9%

Meta-analysis

- NAAT alone
 - Sensitivity $P < 0.001$
 - Specificity $P < 0.001$
- NAAT + glutamate dehydrogenase
 - Sensitivity $P < 0.02$
 - Specificity $P < 0.16$
- NAAT + glutamate dehydrogenase + toxin enzyme immunooassay
 - Sensitivity $P < 0.001$
 - Specificity $P < 0.58$
- Align with ASM recommendations

Toxin Negative NAAT Positive Causes

- Colonization
- Borderline symptoms
- Alternative cause (laxatives, meds)
- Prior antibiotic treatment
 - Metronidazole for non-CDI
 - Prior therapy
- Pre-analytical toxin degradation

2015 prospective study w/ outcomes
Polage et al. JAMA Intern Med 2015

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>C. difficile positive</th>
<th>C. difficile negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complication</td>
<td>10 (7.8%)</td>
<td>0</td>
</tr>
<tr>
<td>Death</td>
<td>11 (8.4%)</td>
<td>1 (0.6%)</td>
</tr>
<tr>
<td>Complication or death</td>
<td>18 (13.7%)</td>
<td>1 (0.6%)</td>
</tr>
</tbody>
</table>

*CI care, rectal, sufficiently related to CDI
†Death within 30 days, related to CDI
‡Viable B. fragilis: 91 (9.7%); 21 (6.7%); 96 (9.7%); P=0.08

Toxin -/NAAT + Patients
- Shorter duration of symptoms
- 14 of 18 studies better outcomes
- Few or no complications
- Toxin – complicated CDI rare
- Similar outcomes to Toxin -/NAAT - patients

Why So Much Confusion?
- No true reference method
- Negative experience with toxin assays
- Lab studies without clinical correlation
- Belief that all toxin -/NAAT + or TC = CDI

Overdiagnosis
- 70 yo F w/metastatic RCC
- Multiple episodes of PCR + CDI x 2 yrs
- 12-15 nonbloody, watery BMs/day
- WBC 13.7
- P.O. vanc and metronidazole
- No change>6 days

Diagostic changes have contributed to the rise
1999-2008: True epidemic
- Novel hypervirulent strain
- 95% labs used toxin tests
- Toxin+ = CDI
- Toxin-/C. difficile= not detected
- Occasional missed CDI cases
2009-2015: Test-related epidemic
- First FDA-cleared PCR test
- Labs switch to PCR/NAAT tests
- Toxin+ & Toxin-/C. difficile= detected
- CDI Rates ↑1.5-2X

C. difficile diagnostic testing impacts all aspects of care

Matta, Greenberg, & Singh JAMA Intern Med 2015
Over Diagnosis Case

- Prior treatment minimal effect on diarrhea
- Colonoscopy negative for pseudomembranes & nondiagnostic
- Diarrhea began with axitinib
 - Comor adverse effect
- D/C axitinib dramatic improvement in 3 days
- Medication induced diarrhea with C. diff colonization

Consequences of Overdiagnosis

- Antibiotic dysbiosis, > MDROs
- Misdiagnosis delays
- Penalties for excess CDI cases

- Important for clinicians to use clinical judgement

Infection Prevention and Control

- Private room with dedicated toilet
- Cohort only with CDI
- Contact precautions (gowns and gloves)
- If hyper-endemic soap and water, not alcohol products
- Clean surfaces with sporidical agent
- Minimize frequency & duration & number of antimicrobial agents
- Avoid use of fluoroquinolones, clindamycin and cephalosporins

Study of Cleaning Procedures

- After appropriate decontamination, spores persist
- Hospital surfaces including stainless steel and vinyl
- Surgical gowns
- Spores more resistant
- Sporicical agents

IDSA Recommended Treatment

- D/C inciting antimicrobial agents
- Oral vancomycin or fidaxomicin over metronidazole
- If fulminant—subtotal colectomy with preservation of the rectum OR Diverting loop ileostomy with colonic lavage and vancomycin flushes
- Recurrence—vancomycin with tapered & pulse regimen OR 10 days fidaxomicin
- Multiple (2) recurrences—FMT

Probiotics

- Literature—mixed reviews
- Probably will not hurt
- Some evidence may worsen
- IDSA—not enough evidence

Fecal Microbial Transplantation (FMT)

- ~85% cure rate in recurrent (80-91%)
- Minimal adverse reactions
- Mechanism of action
 - Establishes newly enriched microbiota
 - Indirectly inhibits *C. difficile* by competing for resources
 - Directly inhibits by producing bacteriocins
- Problems
 - Lack of standardization
 - Uncharacterized viruses and bacteria

Fecal Transplants May Transmit Deadly Drug-Resistant Infections

- 2 patients FMT – 1 died
- Extended spectrum beta-lactamase producing *E. coli* (ESBL)
- Same donor—not tested for MDROs
- New regs—test for ESBL, CRE, VRE, MRSA

Eligible Patients

- Clinical symptoms and positive microbial tests
- Recurrent CDI following adequate treatment (10 days of vancomycin, metronidazole, fidaxomicin)
- First recurrence—retreat with fidaxomicin unless severe
- 3 liquid stools per day for 2 days or 6 per 48 hours with 8 weeks of treatment and positive test for CDI
 - Free toxin by EIA

FMT Support in Literature

- By Jan 2018 4 RTC
- Van Nood et al halted early superior effectiveness of FMT
- Kelly et al 90.9% effectiveness vs. 62.5% placebo
Literature in Support of FMT

History of FMT
- 4th century China, during the Jin dynasty
- 1958 in journal Surgery
- 1983

FMT Delivery
- Upper GI via nasogastric tube, endoscopy
- Lower GI via colonoscopy or enema—right colon or terminal ileum
- Capsules—nasogastric release & targeted colonic release (no bowel prep)
- Lower GI colonoscopy better
- Phloral® coating for capsule release in colon
- Comparison of upper vs lower capsules
 - Both safe, well-tolerated, no bowel prep, preferred by patients, same engraftment as colonoscopy

FDA Regulations
- 2016 second draft guidelines on buying samples unless clinical trial (IND)
- Not finalized today—"Enforcement discretion"
- Suggested Track 1—Regulated as "practice of medicine" suggested (state reg only)
- Suggested Track 2—Regulate stool banks: submit safety data & outcomes to FDA
- Informed consent—FMT to treat CDI investigational (other diseases must file IND)

FDA Regulation of FMT
- Prevailing FDA guidance allows physicians to perform FMT using OpenBiome material to treat C. difficile infection not responsive to standard therapy without filing an IND
- Physicians who intend to use FMT to treat CDI not responsive to standard therapy must obtain adequate informed consent from the patient or a power of attorney for the use of FMT products.
- FDA does not require donors to be "known" to either the patient or physician
- FDA does not restrict the use of FMT to any particular route of administration (e.g., colonoscopy, naso-enteric delivery, oral capsule).
- Treatment of indications other than C. difficile infection not responsive to standard therapy must be done as part of an IND application to the FDA

OpenBiome Fecal Bank
- 1st and largest in U.S.
- Non-profit
- 968 partner providers/1200+ healthcare facilities
- 8-week follow-up—no side effects linked
- Registered with FDA voluntarily
- Collaborates with Finch Therapeutics to develop CP101, a freeze-dried oral FMT capsule
- Practitioners responsible for evaluating safety and quality
98% of US Population with 2 Hours

Established Stool Banks Outside of U.S.
- Netherlands Donor Feces Bank—Leiden U
- Birmingham, UK
- Portsmouth, UK
- Saint-Antoine Hospital Paris, France
- University Hospital, Cologne, Germany
- Hospital Ramón y Cajal, Madrid, Spain
- Medical University Graz, Austria
- Asia Microbiota Bank, Hong Kong

Stool Bank
- Unregulated
- 30,000 frozen doses sent

Donor Exclusion Criteria
- Age <18 or ≥50
- BMI <18.5 or >25
- High risk fecal- and or blood-transmittable diseases
- Recent antibiotic use (<6 months)
- GI complaints: diarrhea, obstipation, or irritable bowel-like symptoms
- Recent travel to endemic areas of GI diseases
- 1st degree relative with a GI malignancy <60 years, substantial comorbidity, various medications, autism, neurological disease

Laboratory Testing of Donating Stool
- Serum IgM and IgG
- Hepatitis A, B, C, E
- HIV
- Syphilis
- CMV
- EBV
- Strongyloides
- Parasites OCP

- Stool PCR
 - C. difficile
 - H. pylori
 - Salmonella, Shigella, Campylobacter, Y. enterocolitica & pseudotuberculosis, Aeromonas, Pleisomonas, Shiga toxin producing E. coli
 - Viruses
 - Parasites
 - MDROs

Donor Questionnaire
- Stool frequency/pattern
- General health
- Use of antibiotics
- Travel history
- Sexual behavior

Video of procedure (~11 minutes)
https://www.clinique.org/cms/attachment/729a6bdc-288b-faee-9c0a-80203957010/rev1.mp4
FMT Processing
- **Time:** within 6 hours
- **Prevent environmental contamination**
- **60 grams** (decreased cure rate if <50 g)
- **Homogenized with saline by mortar and pestle or blender**
- **Metal sieve to remove food fragments**
- **Centrifugation 15 min. 6000g**
- **Cryoprotectant (glycerol) 10% in 200 mL**
- **Freeze at -80°C for 5-6 months to 2 yrs**

FMT Procedure
- **Transport on dry ice**
- **Thaw 4°C overnight or 5 hours room temp**
- **Kept 3 hours room temp and 6 hrs refrigerated**
- **Treat patient with vancomycin until 1 day before procedure**
- **Infusion through gastric or duodenal tube or enema (repeated)**
- **No antimicrobials for at least 1 month**

Adverse Event with FMT Capsules
<table>
<thead>
<tr>
<th>Event</th>
<th>N = 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>45%</td>
</tr>
<tr>
<td>Treatment-emergent AE</td>
<td>43%</td>
</tr>
<tr>
<td>Treatment-emergent related to drug study</td>
<td>31%</td>
</tr>
<tr>
<td>Serious (Acerbation of COPD)</td>
<td>1</td>
</tr>
<tr>
<td>Serious related to drug study</td>
<td>0</td>
</tr>
<tr>
<td>Serious leading to death</td>
<td>0</td>
</tr>
</tbody>
</table>

Most common: bloating, flatulence, subjective pain/distressation

Bacterial Diversity Before and After FMT

Business Plan: Break-Even for The Netherlands
- 100 patients yearly—899 Euros
- 400 patients yearly—785 Euros
- Recruitment, screening, selection of donors
- Periodic rescreening
- Assessment of patients’ eligibility
- Post treatment monitoring
- Laboratory testing, personnel, storage, 10% retreatment

Do-It-Yourself
- 10,000/year
- Blogs and social media
- “PowerofPoop” connects to potential donors—$30–$200
- Mix stool with saline
- Squirt into rectum w/enema bottle or bag
- No gelatin capsules!
- Not available or unaffordable
Bezotoxamab and Actoxumab
- Monoclonal antibody binds to & neutralize CDI toxins
- Bezotoxamab—toxin B
- Actoxumab—toxin A
- Very expensive
- Bezlotoxumab associated with substantially lower rate of recurrent infection

Ribaxamase Reduces C. Diff Infection After IV Beta-Lactam Therapy
- Beta-lactamase
- Oral drug degrades antibiotics in upper GI
- Less disturbance of gut microbiome
- Doesn’t affect pharmokinetics of antibiotic
- Decreased risk of VRE but not ESBLs

Case Report
- 54-y-o white female BMI of 40, hypertension, heart failure, anxiety disorder
- Small bowel obstruction Nov 2016 with 1 dose of cefazolin (2000 mg)
- 5 days post discharge: nausea, vomiting, abdominal pain, intermittent diarrhea
- Colonic wall thickening on CT and PCR positive for CDI toxins
- 14 days of metronidazole IV
- Exploratory laparotomy for recurrent small bowel obstruction and partial resection

Case Report cont.
- 10-day post-op metronidazole & ciprofloxacin
- 3 week checkup—severe watery diarrhea (20), hypotension and fever
- Positive CDT PCR—second episode
- Treated with metronidazole and oral vancomycin and fidaxomicin
- Recurred few weeks later with positive CDI
- Colonoscopy with FMT to cecum
- Pseudomembranous ulceration

Case Report cont.
- FMT failed do to loss during diarrhea
- 3 weeks later, second FMT performed
- Patient improved for 3 weeks and CDT undetectable
- Recurrence of diarrhea and positive CDT
- 3rd FMT and infusion of Bezlotoxumab infused
- Cure with a side effect of fever

IBD and CDI
- IBD patients: > antimicrobials, exposure to healthcare & immunosuppressive drugs
- Independently higher risk for CDI
- Less diverse gut microbiome in IBD and obesity
- Loss of resistance to CDI colonization
FMT for IBD

- No difference at 12 wks 221 FMT recipients and 236 placebo
- Responders had higher B to F ratio (Prevotella spp.)
- Not recommended treatment

The Lancet Gastroenterology & Hepatology

Conclusions

- CDI serious ongoing problem for patients and providers
- FMT effective if carefully carried out but not without risk
- Antimicrobial stewardship necessary