

1

3

# Pee-culiar Blood Groups: The Curious Case of Sid

CLPC SEMINAR: FALL 2025 KRISTIN BUTLER, MPH, MLS (ASCP)<sup>CM</sup> LSU HEALTH SHREVEPORT

# Course Objectives:

- 1. Define and characterize the Sid blood group system.
- 2. Explore unique biological features of the Sid antigen.
- 3. Describe laboratory testing and clinical significance for the Sid antigen and antibodies.

Fun fact: Guinea pig urine is the richest natural source of the Sda antigen!

2





# Lister Institute of Preventive Medicine USTERINE NATISET IN LISTERINE N

# 1967, London • Volunteer donor named Sidney Smith > Head of the maintenance department • System named after him • Antigen named Sda Retto, PH., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith, D.K.L.G. (1967), Anti-Ser, P.M., Howell, P., Ikin, E.W., Giles, C.M. and Goldsmith

# Historical highlights

- Multiple groups describing distinctive agglutination pattern from an elusive antibody (1967)
- > Refractile small agglutinates in a sea of free cells
- Difficult to distinguish weakly positive from negative RBCs
- ➤ Individuals with positive RBCs varied in agglutination strength with the antibody
- > 1% strong, 80% moderate, 10% weak or neg



5

# Historical highlights

- 1970: group from Radcliffe Infirmary in Oxford found the Sd<sup>a</sup> antigen in urine of humans and various animals
- > Over 90% of people secrete Sda
- > Expression of the Sda antigen varies from barely detectable to extremely strong
- Found Sda "activity" in tissues and fluids, including urine, milk, feces, and saliva

J.A. Morton, M.M. Pickles, A.M. Terry; The Sda Blood Group Antigen in Tissues and Body Fluids. Vox Sanguinis 31 December 1970; 19 (5-6): 472-482. https://doi.org/10.1159/000466036

# Historical highlights

6

8



- In 1971, anti-Sda was associated with the Cad phenotype
- > First noted in 1962 by Japanese investigators
- Later defined as a feature among members of a Mauritian family of India origin (1968)
- ➤ Polyagglutination with anti-Sda

# Terminology and nomenclature

- Originally placed in 901 series of high-prevalence antigens
- · Confirmation of genetic origin in 2019
- ➤ ISBT acknowledged SID group system as number

Red Cell Immunogenetics and Blood Group Terminology | ISBT Working Party |
The International Society of Blood Transfusion (ISBT) Table of blood group systems | The International Society of Blood Transfusion (ISBT)



# Antigens and antibodies of SID

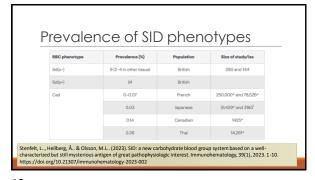


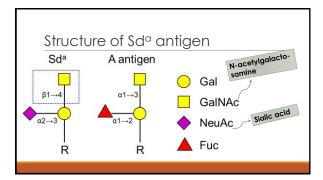
- Only one antigen, Sda
- Anti-Sda is naturally occurring IaM
  - > Generally considered insignificant
  - > IgG and rise in titer have been described
  - > Hemolytic transfusion reactions have been described when donor RBC had strong expression of Sda



9 10

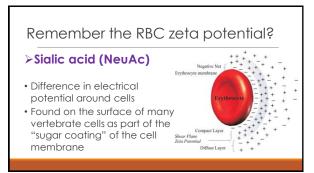
# Antigens and antibodies of SID


- Sda antigen is lacking on RBC of fetus and newborn
- Becomes evident around 7 10 months of age
- Shares similarities with Lewis system antigens
- > Sda appears to be passively absorbed onto RBC
- Pregnant women may transiently appear Sd(a=)
- > Antibodies can be neutralized by various body fluids


# Related Cad phenotype

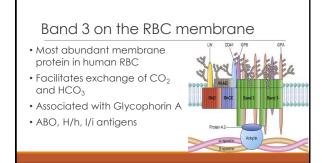
"Super Sid" Sd(a+++)

- Extremely low-prevalence phenotype • RBCs highly reactive to anti-Sda
- 1962: Japanese group O and B donors
- 1968: Family of group B donors
- > Found RBC reacted with Dolichos biflorus (anti-A1 lectin)
- > Sanger et al. (1971) established link with Sda
- > Additional studies followed to confirm
- > Higher prevalence in Asian population

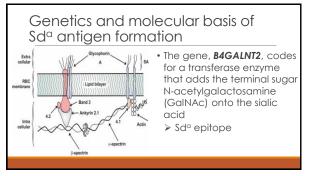

11 12

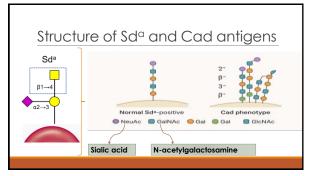




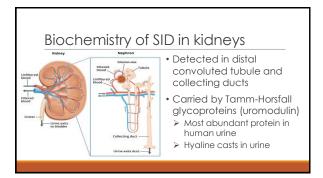

13 14

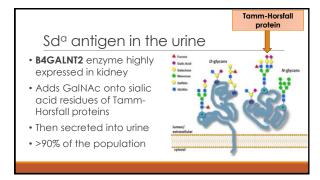
# Biochemistry of SID on RBC Antigen structures of Sda and Cad decorate Glycophorin A and Band 3 Haus the same terminal sugar as A antigen, N-acetylgalactosamine (GalNAc)



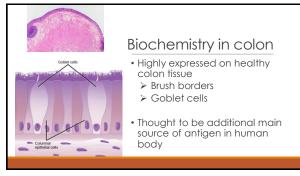


15 16

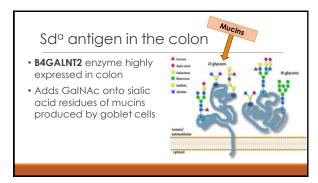
# Glycophorin A on RBC membrane Major intrinsic membrane protein of RBC Required for high activity of Band 3 anion exchange Highly decorated with sialic acid (NeuAc) Horizontal interaction





17 18







19 20





21 22





23 24



# So how and why the GUINEA PIG?!

- In 1951, researchers investigating blood group antigens found weird reactivity after RBCs were treated with guinea pig urine
- In 1963, another group purified the substance, proving it is carbohydrate in nature
- Guinea pigs express a more "Sda-active" version of Tamm-Horsfall proteins
  - > Richest source of Sda antigen known!



25 26

# Genetic origin solved!

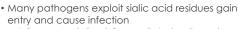


- 1960s 70s: Sda antigen known
- 1980s 90s: extracts from colon and kidney tissues could generate  $Sd^{\alpha}$  antigen  $\rightarrow$  ENZYME elucidated
- 2001 2003: researchers found new gene on CHROMOSOME 17 (B4GALNT2)
- 2019: Missense mutation gives rise to Sd(a=) phenotype Sid gets his own blood group system!

# Disease associations



- Since Sda expressed on products of renal and colon epithelial cells, speculation that it contributes to:
  - > Epithelial barrier function
  - > Microbial adhesion and recognition
  - > Cell-cell communication
  - > Immune regulation via glycoprotein structure

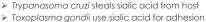



27



# Sda may act as a decoy receptor










- > Many bacteria use sialic acid as "molecular mimicry" > Plasmodium falciparum bind to sialic acid

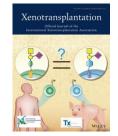






# Studies in other animals




- In mice, expression of Sda on von Willebrand factor leads to accelerated clearance, and thus bleeding
- Overexpression of B4gaInt2 in mice with muscular dystrophy reduced the pathology
- In sheep, the gene is expressed in ovaries and impacts fertility and litter size
- Knockout mice show significant changes in microbiome diversity, especially in large intestine

30

## Sda and colon cancer

- In health colon mucosa, Sda is "signature" of mature, differentiated epithelial cells
- In colon cancer, Sda is markedly downregulated or completely lost
- > Shift to production of oncofetal antigens
- > Immune evasion, altered microbial interaction
- > Metastatic potential increases
- > Loss of normal epithelial identity
- > Gain of malignant behavior





# Clinical significance for transplant research

- B4GALNT2 orthologue in pigs important for xenotransplant
  - Pig gene codes for an enzyme that is 76% identical to human enzyme
  - ➤ Builds similar Sda/Cad epitopes
  - Most humans have IgM and IgG to these however, probably due to different sialic acid residue

# Clinical significance for transfusion

- Antigen is high prevalence, so anti-Sda rarely detected
- anti-Sda is most often IgM (sometimes IgG) and not significant
- May go undetected because screen cells lack high expression
- Rare cases of hemolytic transfusion reactions reported, usually when Sd(a+++) donor cells are transfused to recipient with anti-Sd<sup>a</sup>



# Case Study of anti-Sda

- 91-year-old English female with myelodysplastic syndrome
- Multiply transfused; currently receiving 2 pRBC every 3 – 4 weeks
- Suffered a hemolytic reaction (HTR) during latest transfusion

Thornton, Nicole. Immunohematology Case Studies 2016 – 2. International Blood Group Reference Laboratory (IBGRL). NHS Blood and Transplant. Bristol, United Kingdom.

33 34

# Case Study of anti-Sda

- ABO/Rh: O, Rh-positive
- Pre-transfusion screening: Negative
- Units issued by electronic crossmatch
- Following HTR, patient samples and suspect unit sent to regional red cell immunohematology reference laboratory

Thornton, Nicole. Immunohematology Case Studies 2016 – 2. International Blood Group Reference Laboratory (IBGRL). NHS Blood and Transplant. Bristol, United Kingdom.

# Case Study of anti-Sda

## Regional Reference Lab results:

- Antibody screen: NEGATIVE
- 10-cell antibody panel: NEGATIVE
- Donor cells crossmatch INCOMPATIBLE with plasma
- DAT on suspect unit: NEGATIVE
- DAT on patient sample: POSITIVE, IgG
- Eluate from patient cells: NEGATIVE

Thornton, Nicole. Immunohematology Case Studies 2016 – 2. International Blood Group Reference Laboratory (IBGRL). NHS Blood and Transplant. Bristol, United Kingdom.

35 36

# Case Study of anti-Sda

- Patient stabilized
- New samples taken 1 week later and referred to IBGRL as non-urgent case
- Now only giving serological crossmatch compatible blood to patient
- Referring lab confirmed antibody screen still negative

Thornton, Nicole. Immunohematology Case Studies 2016 – 2. International Blood Group Reference Laboratory (IBGRL). NHS Blood and Transplant. Bristol, United Kingdom.

# Case Study of anti-Sda

## **IBGRL** results:

38

- ABO/Rh: Group O, R1r (DCe/dce)
- DAT: Positive, IgG
- · Antibody screens (gel and tube): NEGATIVE
- Antibody panel with papain treated cells: POSITIVE, variable strength, mixed field reactivity

Thornton, Nicole. Immunohematology Case Studies 2016 – 2. International Blood Group Reference Laboratory (IBGRL). NHS Blood and Transplant. Bristol, United Kingdom.

37

# 

All the clues point to anti-Sda

- Unusual mixed field (mf) agglutination
- Refractile agglutinates
- Reactivity stronger with papain treated cells
- Reactivity at IS and AHG
- Variation of expression

anti-Sda

39 40

Further testing with patient plasma • Testing against Sd(a++) and Sd(a=) cells Cells IAT Papain treated Cad 4+mf 4+mf Sd(a++) 1+mf 3+mf 4+mf Sd(a=) 0 0 0 Sd(a=) 0 Unit 2+mf 3+mf 4+mf Autocontrol w+

|         | PATIENT PLASMA          |                         |                    | ANTI-Sd <sup>a</sup> CONTROL |                         |                    |
|---------|-------------------------|-------------------------|--------------------|------------------------------|-------------------------|--------------------|
| Cells   | With<br>Sd(a+)<br>urine | With<br>Sd(a=)<br>urine | With patient urine | With<br>Sd(a+)<br>urine      | With<br>Sd(a=)<br>urine | With patient urine |
| Cad     | 0                       | 4+mf                    | 4+mf               | 0                            | 4+mf                    | 4+mf               |
| Sd(a++) | 0                       | 3+mf                    | 3+mf               | 0                            | 3+mf                    | 3+mf               |
| Unit    | 0                       | 3+mf                    | 3+mf               | 0                            | 3+mf                    | 3+mf               |

41 42

The SID antigen and antibody, a most PEE-culiar blood group!



43 44