

Update: Perinatal Group B Streptococcal Disease

Michele B. Zitzmann, M.H.S., MT(ASCP)
LSUHSC Dept. of Clinical Laboratory Sciences
New Orleans
CLPC Spring, 2017

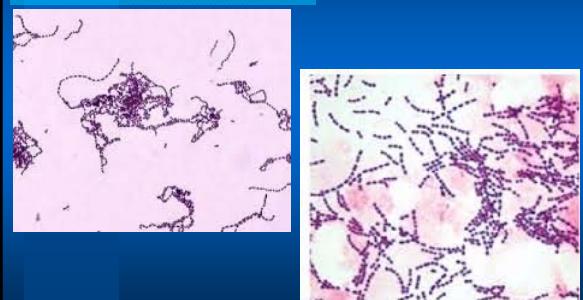
Objectives

- Describe the epidemiology of Group B Streptococcus, including incidence and risk factors.
- Discuss the latest treatment & prevention guidelines for perinatal Group B streptococcal disease.

Group B Streptococcus (GBS)

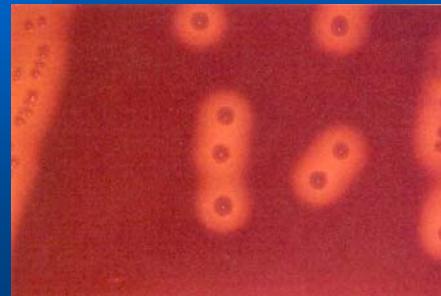
- Leading bacterial infection associated with illness and death among newborns in the U.S.
 - Prior to active prevention activities (1996):
 - 8,000 – 12,000 cases of GBS sepsis & meningitis in newborns each year (U.S.)
 - Approximately 2,000 deaths
 - Direct medical costs: \$300 million/year

Group B Streptococcus (GBS)


- Currently: Remains the leading infectious cause of morbidity & mortality among newborns in the U.S.
 - CDC estimates 1,200 cases of GBS sepsis & meningitis in newborns each year (U.S.)
 - Approximately 70% of cases are among babies born at term (≥ 37 weeks gestation)

Group B Streptococcus

- Streptococcus agalactiae*
- Gram positive cocci
 - Short chains in clinical specimens
 - Longer chains in culture
- Blood Agar plate
 - Gray-white mucoid colonies
 - Small zone of beta hemolysis

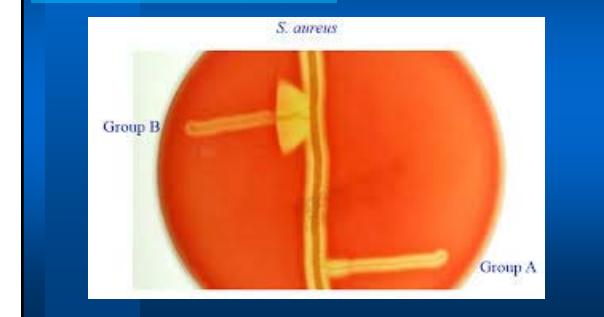

Gram Stain

S. agalactiae: Blood Agar Plate

Beta-Hemolysis

Streptococcus agalactiae

- Laboratory Tests:
 - Catalase: Negative
 - 6.5% NaCl: No growth
 - CAMP test: Positive
 - Bile Esculin: Negative
 - Hippurate hydrolysis: Positive

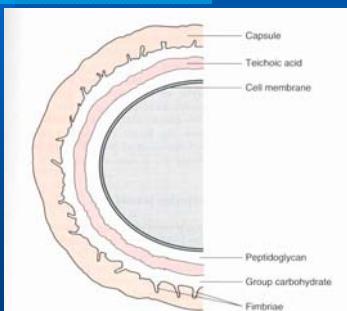

CAMP test

- Used to presumptively identify group B streptococci
- Named after the individuals who discovered the reaction
 - Christie, Atkins, & Munch-Petersen
- *Staphylococcus aureus* is inoculated onto blood agar plate
- Unknown streptococcal isolate inoculated perpendicularly to *S. aureus* inoculum

Positive CAMP test

Positive & Negative CAMP test

Hippurate Hydrolysis


- Differentiates *S. agalactiae* from other beta-hemolytic streptococci
- Inoculate sodium hippurate with colony; incubate 2 hours at 35°C; add ninhydrin reagent (indicator); incubate 10-15 min
- Deep purple color = positive result

Lancefield Classification

- Developed in the 1930's
- Rebecca Lancefield
- Differentiation of C carbohydrate in cell wall
- *Streptococcus agalactiae* – Group B
- Only one organism in Group B category
- Names used interchangeably

Schematic Representation: Streptococcal Cell Wall

Source & Transmission

- Normal flora of bowel, vagina, or throat
- Many "carriers" of GBS (asymptomatic)
- 10 - 30% of all pregnant women carry GBS in the rectum or vagina
- Fetus may come into contact with GBS before or during birth (vertical transmission)
- Cesarean section does NOT eliminate risk

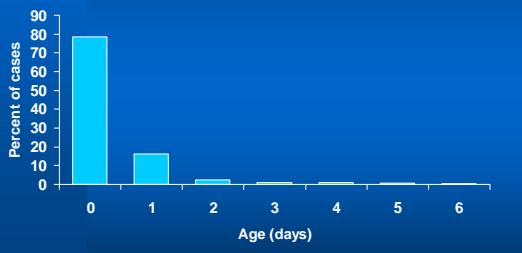
Maternal to Infant Transmission

- If mother carries GBS:
 - 1 of every 100-200 babies will be affected
 - 1 in 4,000 chance if IAP is administered
 - 80% of the cases occur in the first week of life (Early-onset disease – EOD)
 - Most cases apparent a few hours after birth
 - Premature babies are more susceptible

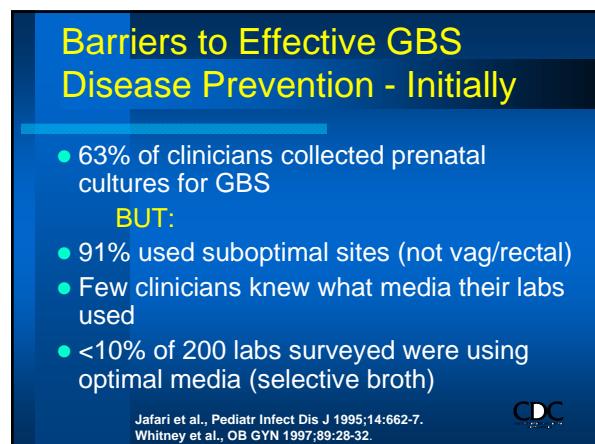
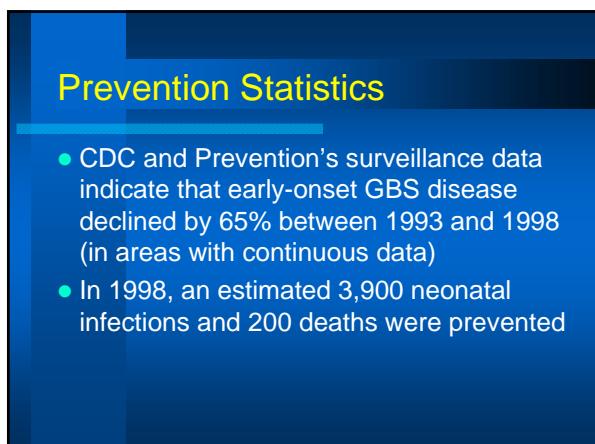
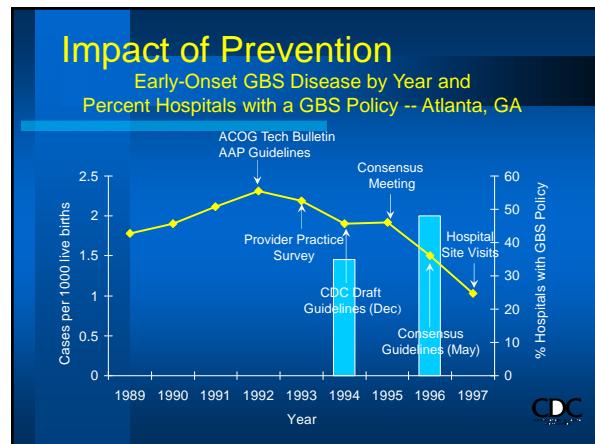
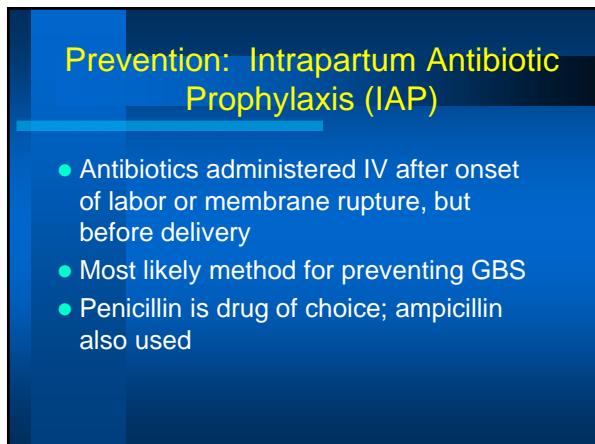
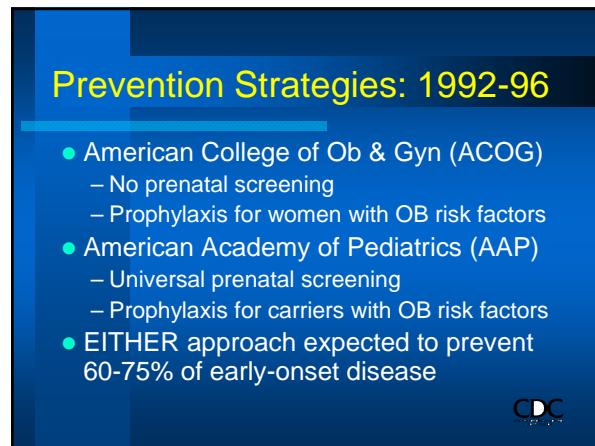
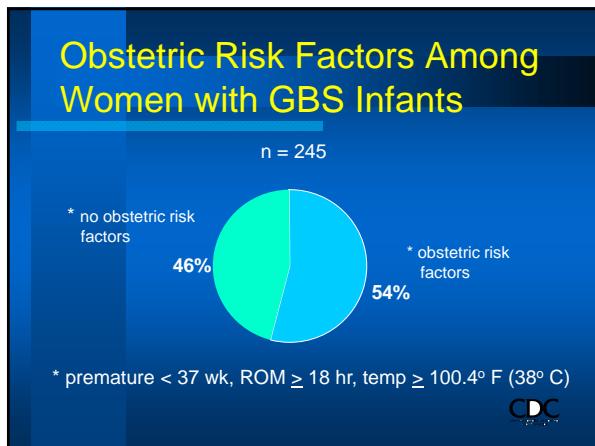
Clinical Disease

- Sepsis – most dramatic & devastating complication
- Pneumonia - early-onset only; 0-5 days
- Meningitis – can be early-onset or late-onset (5-90 days)
- Neurologic - hearing and/or visual loss; impaired mental abilities

Signs & Symptoms – Early Onset

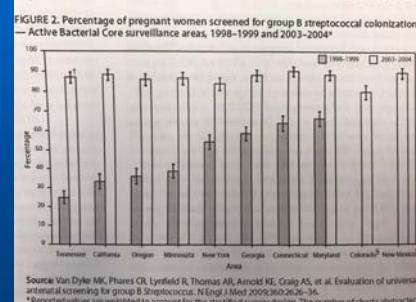

- Asymptomatic at birth
- Within first 24 hours of life:
 - Tachypnea
 - Lethargy
 - Irritability
 - Jaundice
 - Cyanosis
 - Mottling of skin
 - Hypotension
 - Decreased feeding
- 60 – 80% of infections occur within 12 hours of life
- Mechanical ventilation often required

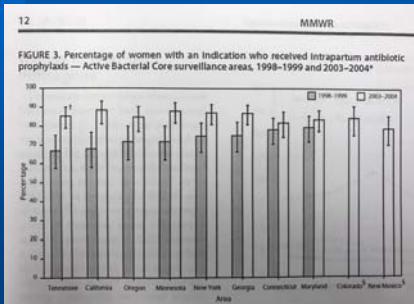
GBS Disease in Infants

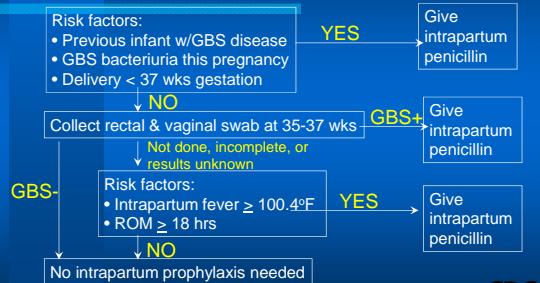
Early-Onset Neonatal GBS Disease

Risk Factors for Early-Onset GBS Disease


- Maternal GBS colonization – **primary risk**
- Obstetric: prolonged rupture of membranes (>18 hours), preterm labor (<37 weeks), intrapartum fever (100.4° F)
- Previous infant with GBS disease
- Demographic (age < 20 yrs, African-American)


Prevention Strategies: 2002

- Universal culture screening for all pregnant women at 35-37 weeks gestation
- Implementation was rapid & widespread
- However, only 50.3% of women delivering preterm had known GBS status
- Only 63.4% received prophylaxis
- Population of women not receiving prenatal medical care

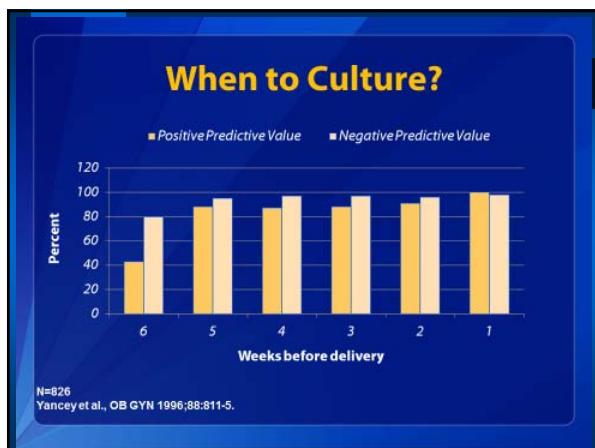

Women Screened for GBS (1998-9) vs. (2003-4)

Women Who Received IAP (1998-9) vs. (2003-4)

Prevention Strategy: 2010

Advantages of Prevention Strategy

- Optimizes prenatal screening
 - Fewer false negatives
 - Less pressure on physicians to treat
- Antibiotics to all GBS carriers
 - Antibiotics start earlier before development of risk factors
 - Adequate time for antibiotic effectiveness


CDC
Centers for Disease Control and Prevention

CDC's Recommendations for Prenatal GBS Cultures

- Optimize cultures:
 - Site: vagina and rectum
 - Single swab or two swabs
 - Through anal sphincter
 - Cervical, perianal, & perineal – NOT acceptable
 - Timing: 35 to 37 weeks
 - Processing: selective broth medium

CDC
Centers for Disease Control and Prevention

Specimen Transport

- Inoculate swabs into non-nutritive transport medium
 - Commercially available (Stuart's or Amie's)
- Specimens in media may remain viable at RT for up to 4 days, however...
 - Results most sensitive when processed within 24 hours & refrigerated
- Specimens should be properly labeled
 - GBS specimen, penicillin allergy status

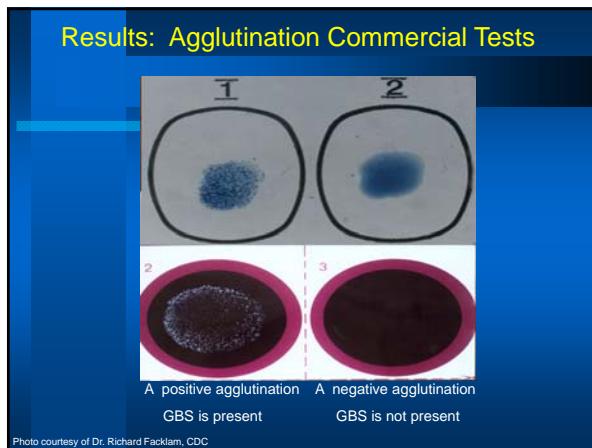
Laboratory Testing

- Inoculate swabs into selective broth
 - Todd-Hewitt broth with nalidixic acid (15 µg/ml) and **EITHER** colistin (10 µg/ml) or gentamicin (8 µg/ml)
 - Commercially: SBM or LIM broth
- Incubate broth 18-24 h. Subculture to sheep blood agar plate

CDC

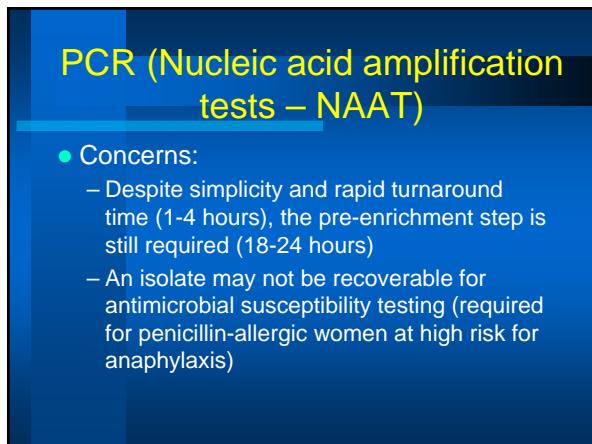
Laboratory Testing

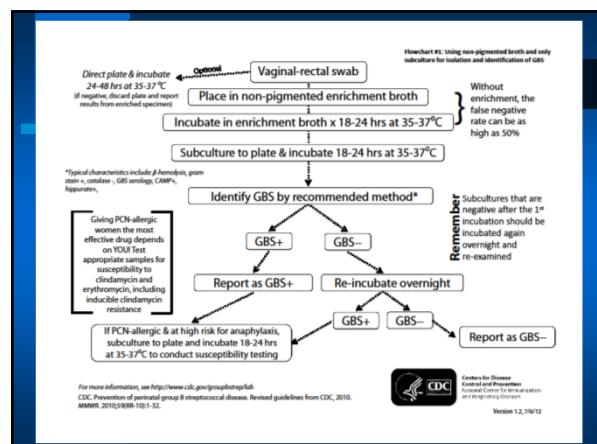
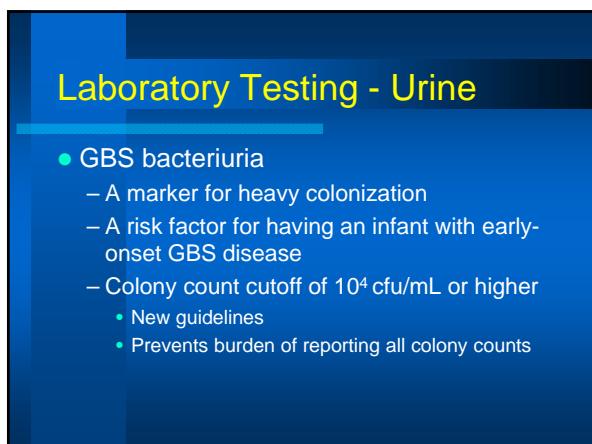
- Pigmented enrichment broth
 - StrepB Carrot Broth
 - Concern: 5-8% of GBS isolates don't produce granadaene (orange carotenoid pigment)

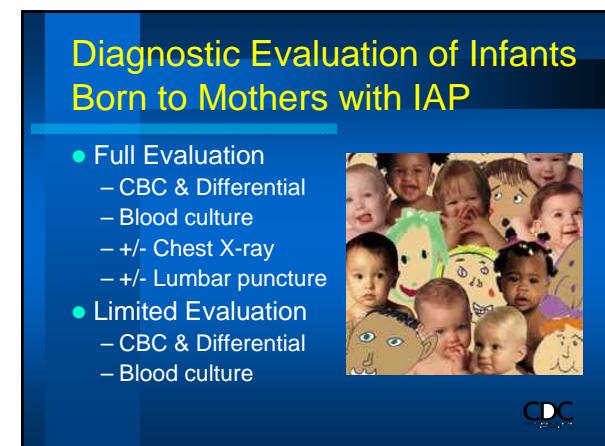
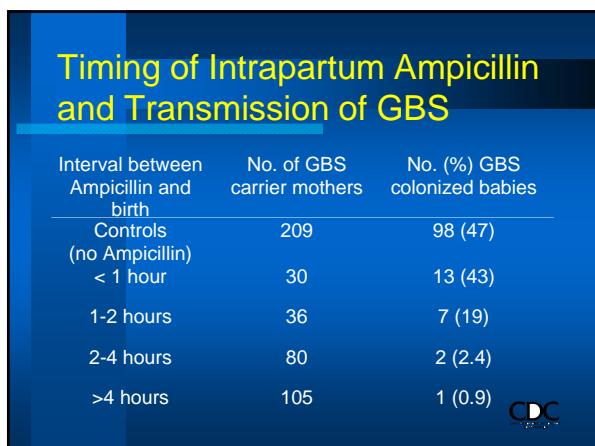
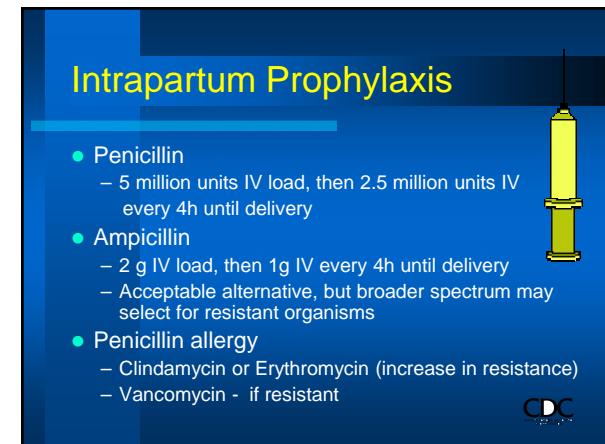
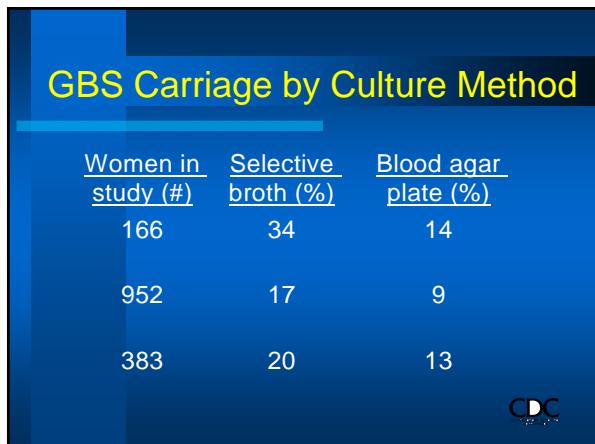
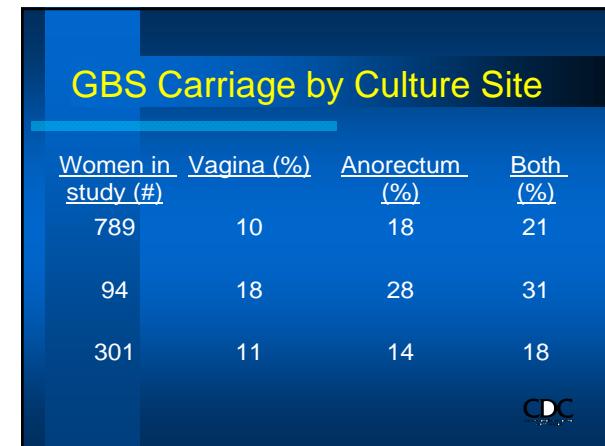
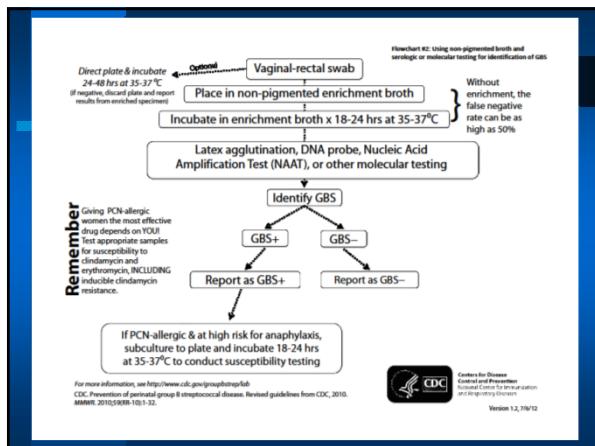

Laboratory Testing continued

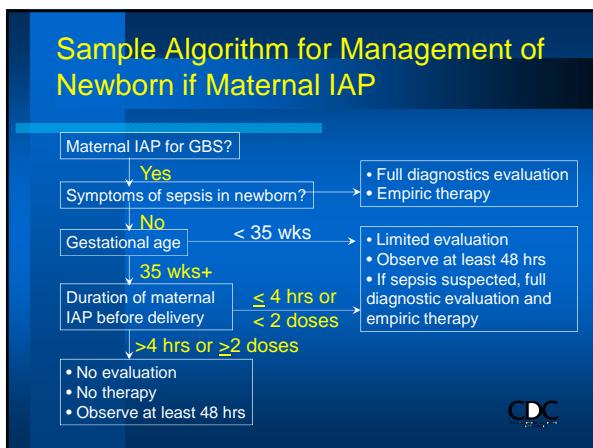
- Inspect and ID suggestive organisms
 - B-hemolytic or nonhemolytic, Gram+, catalase+
- If GBS not identified after 18-24h on sheep BAP, reincubate and inspect at 48h
- Various GBS Ag detection tests (slide agglutination, genetic probes, fluorescent antibodies) may be used for specific identification or CAMP test for presumptive identification

CDC


Slide Agglutination Tests

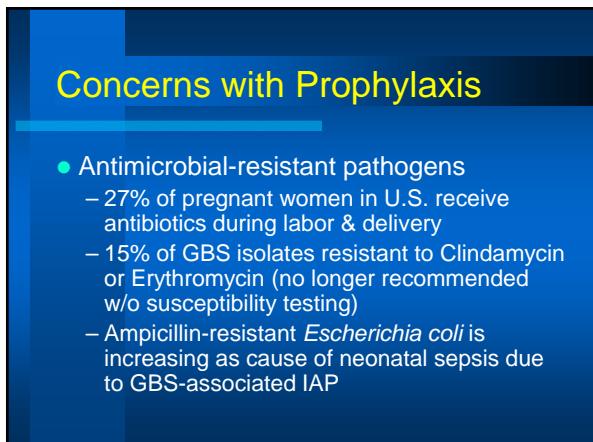


PCR (Nucleic acid amplification tests – NAAT)

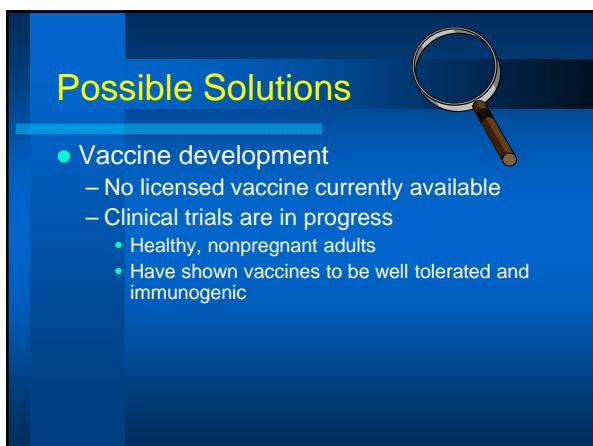






- Can be used for GBS screening at 35-37 weeks if performed from an enrichment broth (incubated for 18-24 hours)
- Cannot be performed directly from vaginal-rectal swab unless woman with unknown GBS status presents in active labor & has no risk factors



PCR (Nucleic acid amplification tests – NAAT)

- As molecular technologies continue to evolve:
 - Expect NAATs or more sophisticated methods to emerge as the standard for detection of GBS carriers
 - May even replace cultures as test sensitivity improves
 - Recent studies show 90% sensitivities for NAAT vs. 54% for culture testing




Concerns with Prophylaxis

- Adverse effects from antibiotics
 - Mild allergic reactions
 - Anaphylaxis
 - Consequences for newborn treatment (observe for 48 hours)

Possible Solutions

- Vaginal Disinfectants
 - Less invasive approach
 - Chlorhexidine investigated in randomised trial in Sweden
 - Less effective than antibiotic prophylaxis
 - Does not lead to an increase in resistant pathogens
 - Clinical trials have found no protection against early-onset GBS disease - 2014

Concerns about Vaccination

- Vaccination during pregnancy
- Optimal timing of vaccination
- Proposed target group: include non-pregnant women and even adolescent girls
- Shift in serotypes of strains causing GBS disease

Vaccination During Pregnancy

- Most women reluctant to accept vaccine during pregnancy
 - Warned to avoid smoking, alcohol & drugs
 - Concerned about adverse effects of vaccine on developing fetus

Timing of Vaccination

- Timing is crucial to minimize potential harm to fetus while allowing adequate time for GBS antibodies to be produced
- Health care professionals agree that early in 3rd trimester is most appropriate time to vaccinate (low risk to fetus; enough time to produce antibodies & cross placenta)

Proposed Target Group

- Addition of GBS vaccine to adolescent series (when booster doses are administered)
 - Duration of protection is unknown
 - Need to protect women over all of their reproductive years
 - Many booster doses may be necessary and complicate vaccination programs
 - Many countries do not immunize at this age

Other Suggestions: Natural Remedies

- Boost competitive & healthy bacteria
 - Probiotics (yogurt & aged cheeses)
- Boost the immune system
 - Avoid sugars & refined carbohydrates
 - Increase vitamin C and D
 - Increase proteins & vegetables in diet
- Kill the bacteria
 - Garlic, tea tree oil, colloidal silver

Other Suggestions: Natural Remedies

- No studies regarding the effectiveness of these remedies
- However, many women have experienced a reversal from positive to negative cultures for GBS after following one or more of these remedies
- Many websites with suggestions of herbal remedies to prevent GBS

Case Study #1

- 28 year old female
- First pregnancy
- Vaginally delivers 5 pound, 15 ounce male
- 37 weeks gestation
- Normal apgar scores at birth
- Mother & baby discharged 24 hours later

Case Study #1

- 24 hours after discharge (48 hours after birth):
 - Difficulty nursing and breathing
 - Lethargic
 - Irritable
- Baby brought to emergency room
 - Fever
 - Hypotension
 - Ventilator

Case Study #1

- Laboratory tests were ordered:
 - Urine culture (suprapubic aspiration)
 - Blood cultures (from 2 different sites)
 - CSF culture
 - Gram stains on all fluids
 - Direct Antigen Test (DAT) on CSF and urine

Case Study #1

- Laboratory results:
 - CSF Gram stain
 - Gram positive cocci in chains
 - CSF Culture
 - Group B Streptococcus
 - Direct Antigen Test
 - Group B Streptococcus

Case Study #1

- Baby treated successfully with Penicillin
- Future pregnancies:
 - Risk factor category
 - Automatic Intrapartum Prophylaxis before delivery
 - Delay discharge of infant for 48 hours

Case Study #2 : 1995-96

- 27 year old female
- First pregnancy
- At 32 weeks gestation, urine culture reveals 10,000 – 50,000 CFU/mL beta-hemolytic streptococci, Group B
- Ob/Gyn prescribes 250 mg oral Amoxicillin 2x for 10 days

Case Study #2 : 1995-96

- At 39 weeks gestation, vaginal culture reveals growth of normal flora
- 6 days later, female is admitted to hospital for labor induction
- Vaginal culture is repeated: negative
- 7 pound, 4 ounce female is vaginally delivered; apgar score = 9
- Mother & baby discharged 48 hours later
- No complications with GBS

Case Study #2 : 1998-99

- 30 year old female
- Second pregnancy
- Previous GBS carrier; infant not affected
- At 13 weeks gestation, vaginal culture reveals no GBS present
- At 21 weeks gestation, urine culture reveals 1,000 – 10,000 CFU/mL GBS

Case Study #2 : 1998-99

- Ob/Gyn prescribes 250 mg oral Amoxicillin 2x for 10 days
- At 36 weeks gestation, vaginal culture repeated; reveals no GBS present
- Admission to hospital 30 days later for labor induction

Case Study #2 : 1998-99

- Upon admission (8:00 am):
 - IV Penicillin G (5 mu) administered
 - Four hours later (12:00 pm) :
 - Dosage lowered to 2.5 mu
 - At 3:07 pm:
 - 8 pound male vaginally delivered; apgar score = 9
 - Mother & baby discharged 48 hours later
 - No complications with GBS

Case Study #3

- 1938
- 6 month old male
- Diagnosed with streptococcal meningitis
- Grave prognosis
- 7 other babies in isolation with same diagnosis

Case study #3

- Dr. offered “experimental treatment”
- Mother had to sign consent
 - Treatment could:
 - Kill baby
 - Have no effect
 - Treat disease
- Only 1 of 8 mothers signed consent
- Treated baby survived; other 7 died

Case Study #3

“Experimental Treatment”

Penicillin

Case Study #3

- Penicillin
 - Very experimental in 1938
 - Had not gone to clinical trials / no studies yet
 - Extremely hard to acquire

Case Study #3

- Age 21 (after MT school)
- Returned to hospital & met Dr. that treated him
- Dr. located patient's medical chart
- Cause of patient's GBS:
 - Breach baby
 - Long labor
 - ROM >18 hours

The Advocate, May 16, 2001

- "Child gets \$107.8 million malpractice award"
 - 10 year old male
 - Brain damage due to delayed treatment for bacterial meningitis
 - 1990, New York hospital
 - Test result showed that mother was positive for GBS

The Advocate, May 16, 2001

- However,
 - Test was ordered a day later than should have been
 - Delay of one day in returning test results from lab (sent out)
 - Another 24 hours elapsed before patient was given antibiotics
- Jury ruled in favor of patient

Case Study #4

- Woman delivered baby who developed severe GBS disease
- Remembered being cultured for GBS & results were negative
- Attorney subpoenaed her medical records
- Indicated patient was screened for GBS in 35th & 37th week of pregnancy
- Results were negative

Case Study #4

- So, what happened???
- Medical records revealed the collection site was the cervix
 - Suboptimal site
 - Should be rejected & physician notified
- Physician was sued for inappropriate site collection
- Hospital sued for accepting & processing the specimen

Medical Laboratory Observer, April 1, 2012

Case Study #5

- Caldwell family in New York
- 9 month old Reagan
- Received new glasses right after father left on a 2 month deployment to Antarctica for the Air Force
- Video shows Reagan seeing his father for the first time
 - <http://abc7ny.com/health/watch-baby-sees-military-dad-for-1st-time-with-glasses-after-homecoming/1793497/>

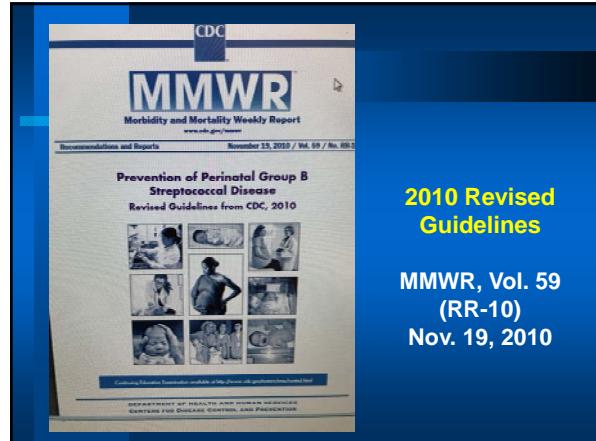
Case Study #5

- Tough year for the Caldwell's
 - Reagan needed glasses due to GBS infection
 - Mother was GBS +; received antibiotics during delivery
 - Reagan began showing symptoms of meningitis 20 days after delivery

Case Study #5

- Symptoms included:
 - Very fussy
 - Lack of appetite
 - Fever (103.1°F) 24 hours later
- Brought to emergency room
 - CSF contained bacteria; glucose level extremely low
 - Septic
 - Began having seizures


Case Study #5


- Diagnosed with GBS meningitis
- Poor prognosis

Case Study #5

- Reagan survived & continues therapy

Organizations Endorsing the 2010 GBS Guidelines

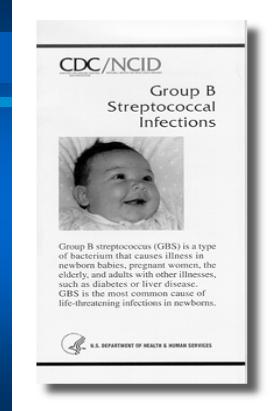
- American College of Obstetricians & Gynecologists
- American Academy of Pediatrics
- American College of Nurse-Midwives
- American Academy of Family Physicians
- American Society for Microbiology

Major Differences in New Guidelines

- Expanded options for lab detection of GBS, including use of pigmented media & PCR assays
- Revised colony count threshold for labs to report GBS in urine of pregnant women

Minor Differences in New Guidelines

- Recommendations for IAP agents to promote the most appropriate antibiotic for penicillin-allergic women (clindamycin & erythromycin)
- Penicillin dosing changed to facilitate the implementation in facilities with different pre-packaged penicillin products


What Can You Do to Help?

- Make sure your OB, Peds, and Microbiology colleagues keep up with the new guidelines
- Ensure your lab is using selective broth medium
- Plan steps needed for implementation in your facility

Educational Methods

- Communication between Ob/Gyn and patient
- Public Awareness
 - Literature (brochures, advertising, posters)
 - Videos
 - Web Sites

Brochures

Posters

Pre-natal Facilities

Posters

Labor & Delivery

Web Sites

- CDC's GBS Internet page
 - <http://www.cdc.gov/groupbstrep>
- GBS Association home page
 - <http://www.groupbstrep.org>

Non-profit organization formed in June, 1990
by parents whose babies died from GBS

Podcasts

Key GBS Resources

- MMWR 2010;59 (No. RR-10):1-36
- CDC's GBS Internet page
 - <http://www.cdc.gov/groupbstrep>
- GBS Association home page
 - <http://www.groupbstrep.org>

CDC

STUDENT ENROLLMENT SHEET	
ID NUMBER	PHONE NUMBER
Licensure Number	
LAST NAME: CITY	
BR	
Jen	
NO	
Example: Baton Rouge	
Fill in Date →	

SCORES			
1-6	11-16	21-26	31-36
1st speaker	2nd speaker	3rd speaker	4th speaker
Comments on reverse			
Speaker - strengths/weaknesses			
Course - strengths/weaknesses			
General - comments about the program or suggestions for future programs			

Evaluation of Speaker

1. Overall quality of presentation.
2. Knowledge of subject matter.
3. Organization of Presentation
4. Rate the session.
5. Achieved stated objectives.
6. Would recommend this course to others?
 - A. Yes
 - B. No

Evaluation of Course

1. Overall quality of presentation.
2. Knowledge of subject matter.
3. Organization of Presentation
4. Rate the session.
5. Achieved stated objectives.
6. Would recommend this course to others?
 - A. Yes
 - B. No

Comments on reverse

Speaker - strengths/weaknesses

Course - strengths/weaknesses

General - comments about the program or suggestions for future programs